

- LDDM
 Linear Direct Drive Motors
- L2U Series

The Perfect Drive for Every Application.

INA – Drives & Mechatronics GmbH & Co. KG, a member of the Schaeffler Group, is a specialist in linear and rotary direct drives. To complement these products, we also offer directly driven positioning systems and all the necessary controllers and mechatronic assemblies. In addition to standard products, IDAM also develops and produces customised drive solutions.

In modern machines and equipment, direct drives are increasingly replacing standard drive solutions because of ever-stricter requirements for dynamics, precision and cost-effectiveness. Directly linking the motor and the moving mass increases the dynamic and static rigidity, enabling high-performance positioning movements. Direct drives are low wearing. This allows maintenance and operating costs to be reduced whilst also increasing availability. For more than 20 years, teams at IDAM have been developing and producing direct drives and complex drive systems for the following sectors: machine tools and production machinery, automation, productronics/semicon, measuring technology and medical engineering. Models and simulations are integrated into the development process for direct drives and positioning systems, making the process more efficient. IDAM has a cutting-edge quality management system. At IDAM, quality management is a dynamic process that is checked daily and continuously improved. IDAM is certified to DIN EN ISO 9001:2008.

Version of the series of the s

IDAM uses specially developed tools to develop and design the motors, including tools for mechanical and thermal simulation. This produces results that our customers can use to optimise their subsequent designs.

Contents

Product Range

L2U Linear Motors – Features, benefits, applications
Designation
Electrical Connection Technology
Operating Several Motors in Parallel
L2U-200-B
L2U-400-B
L2U-600-B

General Information

Check List for Your Enquiry	26
Fechnical Information and Consulting Services	28
DAM Worldwide	29
Notes	30
Overview of Publications	31

L2U Linear Motors Features, benefits, applications

L2U linear motors are slotted, permanent magnet excited AC synchronous motors in double-sided design. They are characterised by their excellent force to volume ratio.

The attraction between the primary part and the two secondary parts is reduced to value approaching zero. The iron-core linear motor has two secondary parts symmetrically opposite each other. A very compact design of the moving primary part reduces mass and volume. The L2U series offers an impressive low moving mass, optimum power loss, high degree of force, and compact installation space. This creates the advantage of having high acceleration and final speeds. The attraction forces are absorbed in the mechanical structure, without having to load the guides. This results both in lower costs for dimensioning and service as well increasing the service life of the guides.

L2U motors are offered in different categories:

- with 3 standard lengths from 200 mm to 600 mm (primary part)
- with 3 standard widths from 50 mm to 100 mm (primary part)
- with 2 standard windings for medium and higher dynamics
- with 2 fastening variants for the secondary parts
- with cooling option for the primary part
- with 2 connection options (cable, plug) for the primary part

Benefits

- Speed adjusting range 0 100% of nominal speed
- Highly dynamic and high rigidity
- High speed
- More force compared with DC motors with the same installation space
- Reduced heat dissipation into the machine bed
- Active cooling options

- High accelerating and stopping capability owing to a favourable force-mass ratio
- Very compact design
- Wear-free drive principle
- Good synchronisation characteristics
- Operating in parallel in different arrangements

Applications

- Machine tools (high-speed milling and grinding machines, presses, handling systems)
- Automation technology
- Printing machines
- Packaging machinery

Designation

			<u>L2U</u> -	<u>L - B - X</u>	- <u>X</u> - <u>X</u> -	PRIM
Short de L2U	signation of motor type Linear motor with iron core (primary part), double-sided, slotted, great force					
Length o	of coil system					
	200 mm, 400 mm, 600 mm					
Width of	- magnetic track 50 mm, 75 mm, 100 mm					
Winding	types -					
WL WH	Low dynamic, reduced power requirement High dynamic, higher power requirement					
Cooling	options					
0 C2	Not cooled on both sides Water cooling double-sided					
Connect	ion options -					
Gl.l	Fixed cable (motor and sensor separate), le Standard: G1.0 (length: 1.0 m)	ength in [m]				
C	Plug					
Motor pa	art -					
PRIM	Primary part					
				L2 - B -	L - X - X	- SEK

Short d L2	L2U linear motor (secondary part)			
Width o	h of magnetic track			
	50 mm, 75 mm, 100 mm			
Length	th of secondary part			
	Standard 76 mm, 152 mm			
Magne	net cover			
0	Standard (without)			
S	Special version (stainless steel)			
Mounti	nting options			
1	Threaded hole M6			
2	Standard: through-hole for screw M6 ISO4762			
Motor _j	or part			
SEK	Secondary part			

Electrical Connection Technology

The standard connections of the IDAM motors are routed through the face end. The cable length from the motor outlet is 1.0 m or according to the customer's request. The cross-section of the power connection cable depends on the nominal motor current, dimensioning is carried out to nominal current I_{cw} at P_{lw} (cooled). The sensor cable allows you to monitor the temperature using PTC and KTY. Motor versions with panel mounting connectors M23 or M40 on the face end are available as an option. Depending on nominal current value at I_{cw} <30 A a M23-connector size is assembled. At I_{cw} >30 A it will be replaced by a M40 connector size.

Characteristics of the lines

- Shielded
- Oil-resistant and coolant-resistant (PUR outer sheath)
- Flame-retardant
- UL/CSA certified
- Suitable for cable carriers

Nominal current (cooled) I _{cw} in A	Line cross-section A in mm²	Diameter (± 10%) d _K in mm	Bending radius moved dynamically r _d in mm	Bending radius laid statically r _s in mm	Weight m in g/m
Sensor ≤ 22 ≤ 30 ≤ 37 ≤ 52 ≤ 70	4x0.14 4G2.5 4G4 4G6 4G10 4G16	5.1 11.0 12.5 14.5 18.0 21.5	min. 10x d	min. 5x d	40 230 310 440 700 1050

Pin assignments

Motor	Connec	tor			_
Core	M23	M40			R
1/U	1	U	Phase U		
2/V	4	V	Phase V		7))))
3/W	3	W	Phase W		
GNYE	2/PE	PE	PE		0)
Concor				Panel mounting connector M23 Panel mounting connector	ctor M40
Sensor				(I _{cw} <30 A) (I _{cw} >30 A)	
WH	A	1	PTC		
BN	В	2	PTC		
GN	С	+	+ KTY		
YE	D	-	– KTY		

Positive direction of motor motion

The electrically positive direction of motion matches a clockwise rotating field for all three-phase motors, i.e. the phase voltages are induced in the order U, V, W.

IDAM motors have this positive direction of motion in the motor movement

- in the direction of the side without cables
- in the direction of the side without panel mounting connectors.

Direction of motion with positive current feed, example: cable outlet

Operating Several Motors in Parallel

For higher power requirements or special motor arrangements (e.g. gantry system) engines of the series L2U-400 or L2U-600 can be connected in parallel to a common converter.

Arrangement on one axis

When operating multiple primary parts in a secondary part track, a distinction is made between the tandem arrangement (parallel) and the Janus arrangement (antiparallel).

Tandem arrangement

The primary parts can be moved against each other in the pole pair grid. Be sure to provide sufficient space for the electrical connection. The phase connections must be connected equally.

Janus arrangement

On Janus arrangements, an offset between the primary parts is necessary before they again can be aligned in the pole pair grid. Motors arranged in this way must operate in the opposite direction of movement. To do so, you interchange the phases V and W, only phase U is now mutually shared.

Setting for the phase coincidence

A check must always be made as to whether the parallel motors are aligned in phase to one another. If the phases do not match up, the force constant and efficiency are reduced depending on the speed owing to induced short-circuit currents.

To adjust the phases, the respective reverse voltage in the motors is measured with a dual-channel oscilloscope during simultaneous movement. The phase displacement of the two curves should not be greater than ±5°, so that good static functioning of the interconnected motors can be ensured.

Evaluation of temperature sensor systems

The integrated PTC sensors must be used for protecting the motors. To do this, the PTC sensors for each motor in the arrangement are connected in series and evaluated via a motor protection tripping unit. To prevent premature tripping of the motor protection, we recommend several or multi-channel motor protection tripping units in the event of three or more PTC monitoring circuits.

The temperature can be observed individually using the KTY or via a KTY evaluation unit for several motors as well. Unused connections must be securely isolated.

Connection of temperature sensors for several motors

Resulting motor data

When the structurally identical single motors are connected in parallel this produces for the converter new electrical data for the replacement motor now available. They can be determined from the data for the single motors:

- Pole pair distance, force constants, voltage constants, time constants as well as speeds remain unchanged.
- Currents, forces and the damping constant multiply according to the number of single motors.
- Resistance and inductance are divided through the number of single motors.

L2U-200-B Drawing: mounting option 1 (secondary part) – from below

The illustrations show a L2U motor with plug and cooling.

Side view: secondary part screw connection from below | plug connector and cooling (4 x cooling connection G 1/8, depth 14)

L2U-200-B Drawing: mounting option 2 (secondary part) – from the top

The illustrations show a L2U motor with fixed cable and without cooling.

Side view: secondary part screw connection from the top | fixed cable, no cooling

L2U-200-B Technical data I

Primary part L2U-L-B	Symbol	Unit	L2U-200-50	L2U-200-75	L2U-200-100
Block length	L ₁	mm	240	240	240
Air gap width	В	mm	50	75	100
Total width with cooling double-sided	B ₁	mm	108	133	158
Thread M10 (number of)	n ₁	pc.	5	5	5
Key position 1	L _{1a}	mm	48.5	48.5	48.5
Key position 2	L _{1b}	mm	117.7	117.7	117.7
Key position 3	L _{1c}	mm	152.9	152.9	152.9
Primary part mass	m ₁	kg	11	14	17
Secondary part L2-B-L, variant 1	Symbol	Unit	L2U-200-50	L2U-200-75	L2U-200-100
Magnet width = air gap width	B ₂	mm	50	75	100
Height (secondary parts: fastening surfaces distance)	H ₂	mm	111	111	111
Width of secondary part	B _{2c}	mm	50	80	100
Distance of 1st to 2nd drill row	B _{2a}	mm	38	55	80
Installation reference for primary part	B _{2b}	mm	35	39	39
Specific mass (per side)	m _n	kg/m	7.3	11.4	14.5
Secondary part L2-B-L, variant 2	Symbol	Unit	L2U-200-50	L2U-200-75	L2U-200-100
(standard)					
Magnet width = air gap width	B ₂	mm	50	75	100
$Height \ (secondary \ parts: \ fastening \ surfaces \ distance)$	H ₂	mm	111	111	111
Width of secondary part	B _{2c}	mm	80	110	130
Distance of 1st to 2nd drill row	B _{2a}	mm	65	90	115
Installation reference for primary part	B _{2b}	mm	21.5	21.5	21.5
Specific mass (per side)	m _n	kg/m	10.5	14.2	17.4
Installation dimensions	Symbol	Unit	L2U-200-50	L2U-200-75	L2U-200-100
Mechanical air gap (per side)	d	mm	1	1	1

Tolerance range of values: ±10% • Subject to changes without advance notification, according to technical progress.

Note: A slight fluctuation is allowed for the air gap dimension. The specified total installation heights (H₂) are technically relevant. Make sure that the primary part is positioned in the middle, between the secondary parts. The position tolerance of the mounting holes for the primary part to the fastening surfaces for the secondary parts is ±0.05 mm.

L2U-200-B Technical data II

Performance data	Symbol	Unit	L2U-200-50	L2U-200-75	L2U-200-100
Ultimate force (1 s) at I _u	F _u	Ν	2198	3297	4395
Peak force (saturation range) at I _p	Fp	Ν	2017	3025	4033
Peak force (linear range) at I _{pl}	F _{pl}	Ν	1496	2244	2993
Nominal force at I _c	F _c	Ν	449	718	991
Nominal force (cooled) at ${\rm I}_{\rm cw}$	F_{cw}	Ν	881	1408	1943
Power loss at F _p (25 °C)	P _{lp}	W	3539	4680	5822
Power loss at F _{pl} (25 °C)	P _{lpl}	W	1185	1567	1950
Power loss at F _c (25 °C)	P _{lc}	W	107	160	214
Power loss at F _{cw}	P _{lcw}	W	534	802	1069
Motor constant (25 $^{\circ}$ C)	k	N/2/W	43.5	56 7	67.8
	™m		49.9	221/	07.0
Damping constant (short-circuit)	k _d	N/(m/s)	1889	3214	4593
Electrical time constant	τ_{el}	ms	7.13	8.08	8.67
Attraction force	Fa	Ν	compensated	compensated	compensated
Ripple force (cogging)	F _r	Ν	20	30	40
Pole pair distance	2τ _p	mm	38	38	38

Tolerance range of values: ±10% • Subject to changes without advance notification, according to technical progress.

Force vs. speed

L2U-200-B Technical data III

Winding data	Symbol	Unit	L2U- 200-50- WH	L2U- 200-75- WH	L2U- 200-100- WH
Force constant	k _f	N/A _{rms}	50.6	75.9	101.3
Back EMF constant, phase-to-phase	k _u	V/(m/s)	41.4	62.1	82.8
Limit speed at I_p and $U_{DCL} = 300 V_{DC}$	v _{lim}	m/s	3.4	2.0	1.3
Limit speed at I_p and $U_{DCL} = 600 V_{DC}$	v _{lim}	m/s	7.0	4.6	3.4
Electrical resistance, ph-to-ph (25 °C)	R ₂₅	Ω	0.90	1.20	1.49
Inductance, phase-to-phase	L	mH	6.45	9.67	12.90
Ultimate current (1 s) Peak current (saturation range) (3 s) Peak current (linear range) Nominal current (not cooled) Nominal current (cooled)	I _u I _p I _c I _{cw}	A _{rms} A _{rms} A _{rms} A _{rms}	63.8 51.1 29.6 8.9 17.4	63.8 51.1 29.6 9.5 18.5	63.8 51.1 29.6 9.8 19.2
Maximum DC link voltage	U _{DCL}	V	600	600	600

Tolerance range of values: ±10% • Subject to changes without advance notification, according to technical progress.

Force vs. current

L2U-400-B Drawing: mounting option 1 (secondary part) – from below

The illustrations show a L2U motor with plug and cooling.

Side view: secondary part screw connection from below | plug connector and cooling (4 x cooling connection G 1/8, depth 14)

L2U-400-B Drawing: mounting option 2 (secondary part) – from the top

The illustrations show a L2U motor with fixed cable and without cooling.

Side view: secondary part screw connection from the top | fixed cable, no cooling

L2U-400-B Technical data I

Primary part L2U-L-B	Symbol	Unit	L2U-400-50	L2U-400-75	L2U-400-100
Block length	L ₁	mm	450	450	450
Air gap width	В	mm	50	75	100
Total width with cooling double-sided	B ₁	mm	108	133	158
Thread M10 (number of)	n ₁	pc.	11	11	11
Key position 1	L _{1a}	mm	83.3	83.3	83.3
Key position 2	L _{1b}	mm	222.1	222.1	222.1
Key position 3	L _{1c}	mm	292.1	292.1	292.1
Primary part mass	m ₁	kg	21	27	34
Secondary part L2-B-L, variant 1	Symbol	Unit	L2U-400-50	L2U-400-75	L2U-400-100
Magnet width = air gap width	B ₂	mm	50	75	100
Height (secondary parts: fastening surfaces distance)	H ₂	mm	111	111	111
Width of secondary part	B _{2c}	mm	50	80	100
Distance of 1st to 2nd drill row	B _{2a}	mm	38	55	80
Installation reference for primary part	B _{2b}	mm	35	39	39
Specific mass (per side)	m _n	kg/m	7.3	11.4	14.5
Secondary part L2-B-L, variant 2	Symbol	Unit	L2U-400-50	L2U-400-75	L2U-400-100
(standard)					
Magnet width = air gap width	B ₂	mm	50	75	100
$Height \ (secondary \ parts: \ fastening \ surfaces \ distance)$	H ₂	mm	111	111	111
Width of secondary part	B _{2c}	mm	80	110	130
Distance of 1st to 2nd drill row	B _{2a}	mm	65	90	115
Installation reference for primary part	B _{2b}	mm	21.5	21.5	21.5
Specific mass (per side)	m _n	kg/m	10.5	14.2	17.4
Installation dimensions	Symbol	Unit	L2U-400-50	L2U-400-75	L2U-400-100
Mechanical air gap (per side)	d	mm	1	1	1

Tolerance range of values: ±10% • Subject to changes without advance notification, according to technical progress. Note: A slight fluctuation is allowed for the air gap dimension. The specified total installation heights (H₂) are technically relevant. Make sure that the primary part is positioned in the middle, between the secondary parts. The position tolerance of the mounting holes for the primary part to the fastening surfaces for the secondary parts is ±0.05 mm.

L2U-400-B Technical data II

Performance data	Symbol	Unit	L2U-400-50	L2U-400-75	L2U-400-100
Ultimate force (1 s) at I _u	F _u	Ν	4395	6593	8791
Peak force (saturation range) at I_p	Fp	Ν	4033	6050	8067
Peak force (linear range) at I _{pl}	F _{pl}	Ν	2993	4489	5985
Nominal force at I _c	F _c	Ν	894	1428	1971
Nominal force (cooled) at ${\rm I}_{\rm cw}$	F_{cw}	Ν	1753	2800	3865
Power loss at F. (25 °C)	Pin	W	7077	9360	11643
Power loss at F _{pl} (25 °C)	Pipi	W	2370	3135	3899
Power loss at F_c (25 °C)	Plc	W	211	317	423
Power loss at F _{cw}	P _{lcw}	W	1057	1585	2114
Motor constant (25 °C)	k _m	N/√W	61.5	80.2	95.8
Damping constant (short-circuit)	k _d	N/(m/s)	3778	6428	9186
Electrical time constant	$ au_{el}$	ms	7.13	8.08	8.67
Attraction force	F _a	Ν	compensated	compensated	compensated
Ripple force (cogging)	F _r	Ν	24	36	48
Pole pair distance	2τ _p	mm	38	38	38

Tolerance range of values: ±10% • Subject to changes without advance notification, according to technical progress.

L2U-400-B Technical data III

Winding data	Symbol	Unit	L2U- 400-50- WL	L2U- 400-50- WH	L2U- 400-75- WL	L2U- 400-75- WH	L2U- 400-100- WL	L2U- 400-100- WH
Force constant	k _f	N/A _{rms}	101.3	50.6	151.9	75.9	202.5	101.3
Back EMF constant, phase-to-phase	k _u	V/(m/s)	82.8	41.4	124.2	62.1	165.7	82.8
Limit speed at I_p and $U_{DCL} = 300 V_{DC}$	v _{lim}	m/s	1.4	3.9	0.7	2.3	0.3	1.6
Limit speed at I_p and $U_{DCL} = 600 V_{DC}$	v _{lim}	m/s	3.3	7.0	2.1	4.6	1.5	3.4
Electrical resistance, ph-to-ph (25 °C)	R ₂₅	Ω	1.81	0.45	2.39	0.60	2.98	0.74
Inductance, phase-to-phase	L	mH	12.90	3.22	19.35	4.84	25.79	6.45
Ultimate current (1 s) Peak current (saturation range) (3 s) Peak current (linear range) Nominal current (not cooled) Nominal current (cooled)	I _u I _p I _c I _{cw}	A _{rms} A _{rms} A _{rms} A _{rms}	63.8 51.1 29.6 8.8 17.3	127.7 102.1 59.1 17.6 34.6	63.8 51.1 29.6 9.4 18.4	127.7 102.1 59.1 18.8 36.9	63.8 51.1 29.6 9.7 19.1	127.7 102.1 59.1 19.5 38.2
Maximum DC link voltage	U _{DCL}	V	600	600	600	600	600	600

Tolerance range of values: ±10% • Subject to changes without advance notification, according to technical progress.

Force vs. current

L2U-600-B Drawing: mounting option 1 (secondary part) – from below

The illustrations show a L2U motor with plug and cooling.

Side view: secondary part screw connection from below | plug connector and cooling (4 x cooling connection G 1/8, depth 14)

L2U-600-B Drawing: mounting option 2 (secondary part) – from the top

The illustrations show a L2U motor with fixed cable and without cooling.

Side view: secondary part screw connection from the top | fixed cable, no cooling

L2U-600-B Technical data I

Primary part L2U-L-B	Symbol	Unit	L2U-600-50	L2U-600-75	L2U-600-100
Block length	L ₁	mm	659	659	659
Air gap width	В	mm	50	75	100
Total width with cooling double-sided	B ₁	mm	108	133	158
Thread M10 (number of)	n ₁	pc.	17	17	17
Key position 1	L _{1a}	mm	118.1	118.1	118.1
Key position 2	L _{1b}	mm	326.5	326.5	326.5
Key position 3	L _{1c}	mm	466.1	466.1	466.1
Primary part mass	m ₁	kg	31	40	50
Secondary part L2-B-L, variant 1	Symbol	Unit	L2U-600-50	L2U-600-75	L2U-600-100
Magnet width = air gap width	B ₂	mm	50	75	100
Height (secondary parts: fastening surfaces distance)	H ₂	mm	111	111	111
Width of secondary part	B _{2c}	mm	50	80	100
Distance of 1st to 2nd drill row	B _{2a}	mm	38	55	80
Installation reference for primary part	B _{2b}	mm	35	39	39
Specific mass (per side)	m _n	kg/m	7.3	11.4	14.5
Secondary part L2-B-L, variant 2	Symbol	Unit	L2U-600-50	L2U-600-75	L2U-600-100
(standard)					
Magnet width = air gap width	B ₂	mm	50	75	100
Height (secondary parts: fastening surfaces distance)	H ₂	mm	111	111	111
Width of secondary part	B _{2c}	mm	80	110	130
Distance of 1st to 2nd drill row	B _{2a}	mm	65	90	115
Installation reference for primary part	B _{2b}	mm	21.5	21.5	21.5
Specific mass (per side)	m _n	kg/m	10.5	14.2	17.4
Installation dimensions	Symbol	Unit	L2U-600-50	L2U-600-75	L2U-600-100
Mechanical air gap (per side)	d	mm	1	1	1

Tolerance range of values: ±10% • Subject to changes without advance notification, according to technical progress.

Note: A slight fluctuation is allowed for the air gap dimension. The specified total installation heights (H₂) are technically relevant. Make sure that the primary part is positioned in the middle,

L2U-600-B Technical data II

Performance data	Symbol	Unit	L2U-600-50	L2U-600-75	L2U-600-100				
Ultimate force (1 s) at I _u	F _u	Ν	6593	9890	13186				
Peak force (saturation range) at I_p	Fp	Ν	6050	9075	12100				
Peak force (linear range) at I _{pl}	F _{pl}	Ν	4489	6733	8978				
Nominal force at I _c	F _c	Ν	1338	2137	2950				
Nominal force (cooled) at ${\rm I}_{\rm cw}$	F _{cw}	Ν	2624	4192	5786				
Power loss at F _p (25 °C)	Plp	W	10616	14040	17465				
Power loss at F _{pl} (25 °C)	P _{lpl}	W	3555	4702	5849				
Power loss at F _c (25 °C)	P _{lc}	W	316	474	632				
Power loss at F _{cw}	P _{lcw}	W	1579	2369	3159				
Motor constant (25 °C)	k _m	N/√W	75.3	98.2	117.4				
Damping constant (short-circuit)	k _d	N/(m/s)	5667	9642	13780				
Electrical time constant	τ_{el}	ms	7.13	8.08	8.67				
Attraction force	Fa	Ν	compensated	compensated	compensated				
Ripple force (cogging)	Fr	Ν	30	45	61				
Pole pair distance	2τ _p	mm	38	38	38				

Tolerance range of values: ±10% • Subject to changes without advance notification, according to technical progress.

Force vs. speed

L2U-600-B Technical data III

Winding data	Symbol	Unit	L2U- 600-50- WL	L2U- 600-50- WH	L2U- 600-75- WL	L2U- 600-75- WH	L2U- 600-100- WL	L2U- 600-100- WH
Force constant	k _f	N/A _{rms}	101.3	50.6	151.9	75.9	202.5	101.3
Back EMF constant, phase-to-phase	k _u	V/(m/s)	82.8	41.4	124.2	62.1	165.7	82.8
Limit speed at I_p and $U_{DCL} = 300 V_{DC}$	v _{lim}	m/s	1.6	4.2	0.8	2.6	0.4	1.8
Limit speed at I_p and $U_{DCL} = 600 V_{DC}$	v _{lim}	m/s	3.3	7.1	2.1	4.6	1.5	3.3
Electrical resistance, ph-to-ph (25 °C)	R ₂₅	Ω	1.21	0.30	1.60	0.40	1.98	0.50
Inductance, phase-to-phase	L	mH	8.60	2.15	12.90	3.22	17.20	4.30
Ultimate current (1 s) Peak current (saturation range) (3 s) Peak current (linear range) Nominal current (not cooled) Nominal current (cooled)	I _u I _p I _c I _{cw}	A _{rms} A _{rms} A _{rms} A _{rms}	95.7 76.6 44.3 13.2 25.9	191.5 153.2 88.7 26.4 51.8	95.7 76.6 44.3 14.1 27.6	191.5 153.2 88.7 28.1 55.2	95.7 76.6 44.3 14.6 28.6	191.5 153.2 88.7 29.1 57.1
Maximum DC link voltage	U _{DCL}	V	600	600	600	600	600	600

Tolerance range of values: ±10% • Subject to changes without advance notification, according to technical progress.

Force vs. current

Check List for Your Enquiry Send by fax to: +49 3681 7574-30

Company	Contact person Fax			Inc	Industry / project name								
Telephone				E-1									
Brief description				 									
Motor 🗌	System				Ax	is wi	thin	a mu	lti-ax	is sys	tem]
Spatial position of drive axis													
Type of weight compensation:				 									
Installation conditions for drive													
(sketch or drawing, if appropriate)													
Max. installation dimensions [mm]:													
(length/width/height)													
Mechanical interface:													
Required cable length from motor [m]:													
Ambient conditions													
Temperature [K]:													
Contamination:													
Protection class (IP):													
Motion variables													
Stroke s [mm]:													
Payload [kg]:												ske	tch
External forces [N]:		s											
Maximum speed [m/s]:				 _					_			_	
Constant velocity fluctuations [%] at:				 					+			+	
Shortest acceleration				 				_	+		-	+	
and/or deceleration time [ms]:													→ t
Overshoot in position [µm]:													
Settling time [ms]:													
Typical cycle per time (diagram):													
Service life/operating hours [h]:													

Required accuracies			Γ				
(sketch or drawing, if	appropriate)						
Positioning accuracy	[µm]:						
Repeatability [µm]:							
Cooling							
Cooling permissible?							
Yes 🗌 No							
Oil 🗌 Water	🗆 Air 🗆						
Maximum permissible	e temperature of						
primary part [K]:							
secondary part [K]:			—				
Controller							
Present? yes	no 🗆						
DC link voltage [V _{DC}]:							
Controller type:							
Components:	Servo controller only						
	Complete controller						
Positioning:	Point-to-point control						
	Continuous path contr	rol					
Total cable length fro	m motor to controller [r	n]:	[sketch
Interfaces:							
Options:							
General information							
Accessories:							
Single unit		Series			Prototype fo	or series	
Expected annual nee	d:						
Planned series-produ	ction start:			Technical document	ation		
Price suggestion or co	osts of			Medium:	Paper [] CD	
previous solution:				Language:			
Desired date of quota	ition:						
Eurthor processing by					Data		
Croated by:	•				Date: -		
Created by:					Date:		
reasibility checked by	/:				Date:		

Technical Information and Consulting Services

IDAM offers you cutting-edge technology and expert advice. The IDAM application technicians will be happy to help you select the perfect drive for your application.

Get in contact with us. Phone: +49 3681 7574-0

Automation/medical engineering

E-mail: idam.automation@schaeffler. com

Productronics/measuring technology

E-mail: idam.productronic@schaeffler. com

Production machinery/heavy industries E-mail: idam.pm@schaeffler.com

Automotive

E-mail: idam.automotive@schaeffler. com

IDAM Worldwide

Austria

Phone: +43 2672 2023332 E-mail: idam.austria@schaeffler.com

Canada

Phone: +780 980 3016 E-mail: idam.canada@schaeffler.com

China Phone: +86 21 39576465 E-mail: idam.china@schaeffler.com

Finland

Phone: +358 207 366238 E-mail: idam.finland@schaeffler.com

Israel

E-mail: idam.israel@schaeffler.com

Italy Phone: +39 0321 929267 E-mail: idam.italia@schaeffler.com Japan Phone: +81 45 2

Phone: +81 45 274 8302 E-mail: idam.japan@schaeffler.com

Korea Phone: +82 2 311 3096 E-mail: idam.korea@schaeffler.com

Netherlands Phone: +31 342 403208 E-mail: idam.nederland@schaeffler.com

Russia Phone: +7 495 7377660 E-mail: idam.russia@schaeffler.com

Singapore/Malaysia Phone: +65 6540 8683 E-mail: idam.singapore@schaeffler.com Spain/Portugal Phone: +34 93 4803679 E-mail: idam.iberia@schaeffler.com

Switzerland Phone: +41 71 4666312 E-mail: idam.schweiz@schaeffler.com

Taiwan E-mail: idam.taiwan@schaeffler.com

United Kingdom E-mail: idam.uk@schaeffler.com

USA Phone: +1704 5167517 E-mail: idam.usa@schaeffler.com

Other countries E-mail: idam.sales@schaeffler.com

Notes

Overview of Publications

Are you interested in detailed technical information?

We would be happy to send you our product brochures. Contact us: idam@schaeffler.com

We would be happy to provide you with product brochures for our electronic assemblies and system solutions. All information about our motors and systems can also be found on our website at www.idam.de.

INA - Drives & Mechatronics GmbH & Co. KG

Mittelbergstrasse 2 98527 Suhl, Germany

 Phone
 +49 3681 | 7574-0

 Fax
 +49 3681 | 7574-30

E-mail Web idam@schaeffler.com www.idam.de

