



- LDDM
   Linear Direct Drive Motors
- L1 Series

### **The Perfect Drive for Every Application**

INA - Drives & Mechatronics GmbH & Co. oHG, a company of the Schaeffler Group, specializes in linear and rotary direct drives. These products are supplemented by directly driven positioning systems and related controllers and mechatronics assemblies.

In addition to standard products, IDAM also develops and produces customized drive solutions.

Due to the increasing demands in terms of dynamic performance, precision and cost reduction, direct drives are becoming increasingly more popular in modern machinery and equipment. The direct connection between motor and accelerated mass increases dynamic and static rigidity, reduces elasticity and therefore enables an extremely high level of positioning performance. Direct drives are non-wearing, as a result of which maintenance and operating costs can be reduced whilst simultaneously increasing availability. In the industries of machine tools and production machinery, automation, productronics/semicon, measuring technology and medical technology, teams at IDAM have been developing direct drives and complex drive systems since 1990.

The development of the direct drives and the positioning systems is efficiently supported by the integration of models and simulations.

IDAM employs a state-of-the-art quality management system. At IDAM, quality management is a dynamic process which is examined on a daily basis and is thus continuously improved. IDAM is certified according to standard DIN EN ISO 9001:2008.

Specially developed software are used for the development and design of the motors, including tools for mechanical and thermal simulations. The results of these simulations are available to IDAM customers to help them optimize the assembling designs.



Detail of a FEM model





CAD model

### **Table of Contents**

#### **Technical Principles**

#### **Product Range**

| .1 Linear Motors - Sizes                                           | 20 |
|--------------------------------------------------------------------|----|
| 1 Linear Motors - Features, Areas of Use, Applications, Advantages | 22 |
| .1A Linear Motors                                                  | 24 |
| .1B Linear Motors                                                  | 34 |
| .1C Linear Motors                                                  | 48 |

#### **General Information**

| Check List for Your Enquiry                   | 66 |
|-----------------------------------------------|----|
| Fechnical Information and Consulting Services | 68 |
| DAM Worldwide                                 | 69 |
| Glossary                                      | 70 |
| At a Glance: Motor Forces of the L1 Series    | 76 |

### **Advantages of Linear Direct Drives**

#### Performance

- 1. No conversion of motion form
  - The drive train is free of elasticity, backlash, friction and hysteresis caused by transmission or coupling elements.

#### 2. Compact motor

 Thanks to the large feed force with relatively low accelerated mass, very high acceleration performance is achieved. The force can be used from speed 0 right up to the limit speed.

#### 3. Direct measurement of position

 Thanks to direct position measurement and the rigid mechanical structure, positioning is performed dynamically and highly accurate.

#### **Operating costs**

#### 1. No additional moving parts

 Assembly, adjustment and maintenance work for the drive assembly is reduced.

#### 2. No wear in the drive train

- Even under high and frequently alternating loads the drive train is extremely durable.
- Machine downtimes drop as a result.

#### 3. High availability

- In addition to increased service life and reduced wear, the robustness of the linear motors increases the system availability.
- Mechanical overload in the drive train does not cause damage as is the case with geared motors.

#### Design

#### 1. Compact installation space

 The compact design results in drive modules with small space requirements.

#### 2. Low number of components

- The mature design facilitates the integration of the motor parts in the overall machine concept.
- Fewer and more robust parts result in a low failure rate (high MTBF\*).

#### 3. Versatile design variants

• Facilitate an optimized integration of the motor parts into the overall machine design concept.

### **Characteristics of Linear Motors**

Direct drives enable a linear motion to be performed without motion converter or intermediate gears.

Linear motors comprise a primary part and, generally, a system of permanent magnets which is arranged opposite the primary part and is referred to as the secondary part. A distinction is made between slotted, slotless and ironless direct drives as well as stepper (syncronous reluctance hybrid motor) motors.

The motor develops a uniform and high typical force across a specific speed range. The force is determined by the active air gap surface between the primary and secondary part. If a current is applied to the primary

part, the electromagnetic field around the motor coils produces a force which acts on the secondary part and generates linear motion. For a linear axis system a suitable guidance system is required in order to maintain the air gap between primary part and secondary part, as is a linear measuring system which detects the position of the motor.

Every series of motors comprises a selection of different lengths and widths in order to meet the different force and installation requirements and a range of installation and connection variants is also available.



Type L1, primary part



Type L2U, primary part



Type ULIM, primary and secondary part

### **Overview of Linear Motor Series**

| Motor types               | Criteria                                                                                                                                                                                                                                                          | Construction        |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Slotted motors            |                                                                                                                                                                                                                                                                   |                     |
| L1A series                | Peak forces up to 1010 N   ultimate force-to-mass ratio  <br>e.g. for applications with limited vertical installation space<br>in automation                                                                                                                      | Type: L1A           |
| L1B series                | Peak forces up to 1521 N   optimised thermal power losses<br>with increased feed force   e.g. for applications in auto-<br>mation                                                                                                                                 | Type: L1B           |
| L1C series                | Peak forces up to 5171 N   optimised thermal power losses  <br>water-cooled   e.g. for applications in machine tools                                                                                                                                              | Type: L1C           |
| L2U series                | Peak forces up to 12000 N   double-comb version   ultimate<br>force-to-volume ratio   for long service life/highly dynamic per-<br>formance   constant velocity   cooling options   attraction<br>forces are neutralised   e.g. for applications in machine tools | Type: L2U           |
| Low-iron motors, slotless |                                                                                                                                                                                                                                                                   |                     |
| FSM series                | Flat design   minimised ripple forces   highly dynamic<br>performance and high accuracy   e.g. for applications in<br>measuring machines                                                                                                                          | Type: FSM           |
| Ironless motors           |                                                                                                                                                                                                                                                                   |                     |
| ULIM series               | Excellent dynamic performance   constant velocity   compact<br>design   e.g. for applications in printing machines and in<br>productronics                                                                                                                        | Type: ULIM          |
| Reluctance motors         |                                                                                                                                                                                                                                                                   |                     |
| LRAM                      | Stepper motor   non-wearing, precise air bearing   e.g. for<br>pick-and-place applications in productronics   suitable for<br>low masses                                                                                                                          | Type: LRAM          |
| Special motors            |                                                                                                                                                                                                                                                                   |                     |
| Moving coil               | Excellent dynamic response in the millimetre range   ripple<br>force free   minimised mass   e.g. for applications in Z-axes<br>in the area of productronics                                                                                                      | Type: Moving coil   |
| Moving magnet             | Excellent dynamic response in the millimetre range   ripple<br>force free   compact design   cooling option   e.g. for appli-<br>cations in Z-axes in the area of productronics                                                                                   | Type: Moving magnet |

### **General Motor Parameters - Efficiency Criteria**

Depending on motor size, the forces and the power losses incurred in the process (copper losses) are fixed for different operating points which are independent on the winding design. As linear motors also generate high forces at standstill without outputting any mechanical power, it is not meaningful to quote the efficiency factor here.

The motor constant k<sub>m</sub> can be used as a way of comparing the efficiency of motors. A high motor constant represents a more efficient conversion of

The motor constant k<sub>m</sub> depends on the ohmic resistance and therefore on the winding temperature of a motor. In the motor data sheets, k<sub>m</sub> is specified for 25 °C. The diagram shows the dependency between referenced motor constant and temperature.

current into holding or feed force. It expresses the quadratic dependency of the generated power loss or heating on the load-independent current. This applies exactly to the linear dynamic range at standstill and at room temperature.

$$P_{l} = \left(\frac{F}{k_{m}}\right)^{2}$$

P<sub>l</sub>: Power loss [W] F: Force [N]

 $k_m$ : Motor constant[N/ $\sqrt{W}$ ]

As the motor warms up, its efficiency decreases as a result of an increase in the winding resistance (refer to the diagram).

With increasing speed, the power loss  $P_l$  are supplemented by frequencydependent magnetic reversal losses and eddy current losses which are not covered by the motor constant  $k_m$ , but which become relevant in the limitspeed range and must hence be taken into account. The motor constant  $k_m$ relates to the linear region of the forcecurrent characteristic.



Motor constant vs. temperature

### Winding Designs and Dependencies

The achievable limit speed of any linear motor depends to a large degree on the winding design and the link voltage (U<sub>DCL</sub>). Internal voltage drops within the motor increase the voltage demand with increasing speed. At the specified limit speeds, the voltage demand with fieldoriented control corresponds to the link voltage of the servo converter. After this point the speed decreases quickly. The higher the link voltage and the smaller the winding-related voltage constants ( $k_u$ ), the higher the achievable limit speeds will be. Due to the correlation between voltage constants and force constants, the current demand increases with higher speeds at the same forces.

For the winding data, a standard winding WM was predefined for each motor size for medium dynamic requirements (winding variants WL and WH for lower and higher dynamic requirements respectively are available on request).
At lower link voltages the limit speed is reduced almost proportionally.
The force-current characteristic describes the force at various operating points.
The force-speed characteristic presents the relationship between force and speed at different operating points.



L1 linear motors

### **Force-Speed Characteristic**

The F(v) characteristics of the permanent magnet synchronous motors are virtually speed-independent at low speeds. This applies to  $F_p$ ,  $F_{cw}$  and  $F_c$  up to the associated corner speeds  $v_{1p}$ ,  $v_{1cw}$ and  $v_{1c}$ . At higher speeds, the motor force is reduced as a result of the effects of the back EMF\*, ultimately right down to zero. With higher link voltages it is possible to compensate for greater back EMF and achieve higher speeds.

The motor can be operated at any operating point under the F(v) characteristic under the following conditions:

- up to F<sub>c</sub> in non cooled continuous operation
- up to F<sub>cw</sub> in water cooled continuous operation

 up to F<sub>p</sub> in periodic intermittent duty (S3\*\*).

Closed-loop controlled motor movements require a suitable distance between potential operating points and the decreasing portion of the F(v) characteristic. Typically, approximately 0.2 times the maximum speed should be applied for this distance (control reserve).





L1A motor with cable connection

Force vs. speed

#### Force at v = 0 m/s

When using a continuous force at standstill ( $F_s$ ), e.g. in a Z-axis without mass compensation, it needs to be taken into account that a maximum of 70% of the nominal force can be used. Partial overloading of the motor may occur if this reduced value is exceeded.

\*Back EMF: Back electromagnetic force \*\*S3: Operating mode according to standard VDE 0530

### **Force-Current Characteristic**

The virtually linear portion of the characteristic from origin (0,0) to point ( $F_{pl}$ ,  $I_{pl}$ ) is characterised by force constant  $k_{f}$ :  $F = I \cdot k_{f}$ . The operating points of the motor for non cooled operation ( $F_c$ ,  $I_c$ ) and cooled operation ( $F_{cw}$ ,  $I_{cw}$ ) fall within this area.

The nonlinearity of the F-I characteristic at large currents results from saturation

of the magnetic circuits of a motor. This portion of the characteristic, which is naturally curved, is described in the data sheet and in the diagram by the force-current points  $(F_p, I_p)$  and  $(F_u, I_u)$ . It has a variable slope which is much flatter than  $k_f$ .

The motor can be run for short periods (cyclically for <3 s) up to operating point  $(F_p, I_p)$  provided the average thermal power losses are taken into account. For acceleration processes this is the maximum operating point that should be used.

The limit point  $(F_u, I_u)$  must never be exceeded, as otherwise there is a risk of overloading the motor.





L1A motor with terminal

Force vs. current

### **Thermal Motor Protection** Monitoring circuit I



L1B motor with cable connection

### Direct drives are often being operated at their thermal performance limits. In addition, unforeseen overloads can occur during operation which result in an additional current load in excess of the permissible nominal current. For this reason, the servo controllers for motors should generally have an overload protection in order to control the motor current. Here, the effective value (root mean square) of the motor current must only be allowed to exceed the permissible nominal current of the motor for a short time. This type of indirect temperature monitoring is very quick and reliable.

IDAM motors are equipped with temperature sensors (PTC and KTY) which should be used for thermal motor protection.

#### **Monitoring circuit I**

The three phase-windings are equipped with three series-connected PTCs to ensure motor protection. A PTC is a positive temperature coefficient thermistor. Its thermal time constant when installed is below 5 s.



PTC temperature characteristics

In contrast to a KTY, its resistance increases very sharply when the nominal response temperature  $T_n$  is exceeded, increasing to many times the cold value in the process.

With three PTC elements connected in series, this behaviour also generates a clear change in the overall resistance even if only one of the elements exceeds the nominal response temperature  $T_n$ .

The use of three sensors ensures that, even if the motor is at a standstill under an asymmetric phase load, there is a signal for a safe shut-down. A commercially available motor protection tripping device which is connected downstream will typically trigger between 1.5 and 3.5 kOhm. In this way, overtemperature is detected to within a discrepancy of a few degrees for every winding. The tripping devices also react if the resistance is too low in the PTC circuit, which usually indicates a defect in the monitoring circuit. It also ensures secure electrical separation between the controller and the sensors in the motor. The motor protection tripping devices are not included in the scope of supply.

PTCs are not suitable for temperature measurements. The KTY should be used here if required.

Further monitoring sensors can be integrated at the customer's request.

As a rule, PTC sensor signals must be monitored for protection against overtemperature.

### **Thermal Motor Protection**

Monitoring circuit II





#### **Monitoring circuit II**

On one phase of the motor there is an additional KTY84-130. This sensor is a semiconductor resistor with a positive temperature coefficient.

A temperature-equivalent signal is generated with a delay which depends on the motor type. In order to protect the motor against overtemperature, a shut-off limit is defined in the controller. When the motor is at a standstill, constant currents flow through the windings, with the current depending on the respective pole position. As a result, the motor does not heat up uniformly, which may cause overheating of non-monitored windings. The PTC and KTY sensors have a basic insulation to the motor. They are not suitable for direct connection to PELV/SELV circuits according to standard DIN EN 50178.



The KTY sensor monitors a single winding. Its signal can be used to watching the temperature or issue a warning. Exclusive use for switching off is not permissible.

Temperature characteristics KTY

### **Electrical Connections**

The standard connections of the IDAM motors are routed through the face end. The standard cable length from the point where the cable emerges from the motor is 1000 mm. Different lengths are available upon request. The cross-section of the power cable depends on the continuous motor current and is documented in the catalogue drawing. As standard, the dimensions are laid out for the continuous current I<sub>c</sub> at P<sub>l</sub> (non cooled) for L1A and L1B and continuous current I<sub>cw</sub> at P<sub>lcw</sub> (cooled) for L1C. Motor cables are available from 4G0.75 mm<sup>2</sup>. The sensor cable 4 x 0.14 mm<sup>2</sup> (d = 5.1 mm) allows temperature monitoring via PTC and KTY. The wire ends are open and fitted with end sleeves. The cables which are used are UL approved and suitable for cable chains. Motor versions with terminals (type WAGO series 236) for wires up to 1.5 mm<sup>2</sup> with end sleeves are available as an option. The cable outlets or terminals are shown in the data sheets. For terminals there is a restriction to variants without water cooling and with a continuous current of up to 16 A.

#### **Terminal assignments**

| Motor  |          |         |
|--------|----------|---------|
| Core   | Terminal |         |
| U      | 1        | Phase U |
| VV     | 2        | Phase V |
| WWW    | 3        | Phase W |
| GNYE   | 4        | PE      |
| ВК     |          | Shield  |
| Sensor |          |         |
| WH     | 7        | PTC     |
| BN     | 8        | PTC     |
| GN     | 5        | + KTY   |
| YE     | 6        | - KTY   |
|        |          |         |

#### Positive direction of motor motion

On all three-phase motors the electrically positive direction of motion corresponds to a right-handed rotary field, i.e. the phase voltages are induced in the sequence U, V, W. On IDAM motors, this positive direction of motor motion is

- in the direction of the side without cable(s)
- in the direction of the side without terminal(s).



Direction of motion with positive current feed, example: cable outlet



Direction of motion with positive current feed, example: terminal

| Continuous motor<br>current I in A | Motor cable<br>cross-section<br>A in mm <sup>2</sup> | Diameter<br>d <sub>k</sub> in mm | Diameter Bending radius,<br>d <sub>k</sub> in mm moving<br>r <sub>d</sub> in mm |    |
|------------------------------------|------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------|----|
| ≤9                                 | 0.75                                                 | 7.3                              | 73                                                                              | 44 |
| ≤16                                | 1.5                                                  | 10                               | 100                                                                             | 60 |
| ≤22                                | 2.5                                                  | 11.6                             | 120                                                                             | 70 |

#### **Dimensioning of motor cables**

### Commutation

Synchronous motors are preferably run in commutated operation. As standard, IDAM linear motors are not equipped with Hall sensors. IDAM recommends measuring system-related commutation.



L1 motors

### **Insulation Resistance**

# Insulation resistance for link voltages of up to 600 $\ensuremath{\mathsf{V}_{\text{DC}}}$

IDAM motors comply with EC directive 73/23/EEC and European standards EN 50178 and EN 60204. Prior to delivery they are tested with differentiated high voltage testing methods and casted under vacuum.

Please make sure that the type-related operating voltages of the motors are observed.

#### Overvoltages at motor terminals in converter operation

Due to the extremely fast-switching power semiconductors which generate high du/dt loads, significantly higher voltage peaks than the actual converter voltages may occur at the motor terminals, particularly when longer connecting cables (from a length of about 5 m on) are used between motor and converter. This places a very high load on the motor insulation. The du/dt values of the PWM modules must not exceed 8 kV/µs. The motor connecting cables must be kept as short as possible. In order to protect the motors, an oscilloscope should always be used in the specific configuration to measure the voltage (PWM) applied to the motor via the winding and in relation to PE. The present voltage peaks should not significantly exceed 1 kV.

From approx. 2 kV on a gradual damaging of the insulation should be expected. IDAM engineers will assist you with your application and help you to determine and reduce excessive voltages.

Please observe the recommendations and configuration notes provided by the manufacturer of the converter.

### **Cooling and Cooling Circuits**

#### Power losses and thermal losses

In addition to the power losses defined by the motor constant  $k_m$ , motors are also subject to frequency-dependent losses occurring especially at higher control frequencies (above 50 Hz). These losses jointly cause the motor and other system assemblies to heat up.

The following rule applies at low control frequencies ( $\langle 80 \text{ Hz} \rangle$  of the motors: Motors with a high motor constant  $k_m$  produce lower power losses in relation to comparable motors with a lower motor constant.

The power losses generated during motor operation are transmitted via the motor assembly to attached components. The overall system is carefully designed to control the way in which this heat distribution is influenced and controlled through convection, conduction and radiation.

For the L1C motors, a cooling system is available as an accessory in order to improve heat dissipation.

The continuous forces of liquid-cooled motors are around twice as high as those of non cooled motors.

Motors must be designed and integrated into the machine concept in accordance with the requirements for installation space, accuracy and cooling.

Active cooling should be preferably used on machines with high performance and on equipment with highly dynamic operation and correspondingly high bearing loads.

If complete thermal separation of motor and machine is required (e.g. in order to prevent thermal distortion of the machine construction in high-precision machinery),



Cooling plate for water cooling

then an additional thermal insulation to the machine bed and/or precision cooling is required. The actual cooling is then referred to as the main cooling or power cooling system. The motor cooling system is realized as a cooling plate between motor and machine table and should be connected by the customer to the cooling circuit of a cooling device. Thermal insulation and cooling plates can be supplied as motor parts as an option, or they may already be an integral part of the customer's machine design. The cooling medium passes through internal copper pipes from the inlet to the outlet. Inlet and outlet connections can be assigned to the two water ports as required. The connections have an internal thread G 1/8. When using water as the coolant, additives must be used which prevent corrosion and biological deposits in the cooling circuit.

# Dependency of Characteristic Data on the Supply Temperature of Cooling Medium

The continuous current  $I_{cw}$  indicated in the data sheet for water cooled operation can be achieved at a rated supply temperature  $\vartheta_{nV}$  of 25 °C. Higher supply temperatures  $\vartheta_{V}$  result in a reduction of the cooling performance and therefore also the nominal current. The reduced continuous current  $I_{c red}$  can be calculated by the following quadratic equation:

$$\frac{I_{c red}}{I_{cw}} = \sqrt{\frac{\vartheta_{max} - \vartheta_{V}}{\vartheta_{max} - \vartheta_{nV}}}$$

- I<sub>c red</sub> Reduced continuous current [A] I<sub>cw</sub> Continuous current, cooled at θ<sub>nV</sub> [A]
- $\vartheta_V$  Current supply temperature [°C]
- $\vartheta_{\rm nV} ~~ {\rm Rated~supply~temperature~[^oC]}$
- $\vartheta_{max}$  Maximum permissible winding temperature [°C]

(applies to a constant motor current)



Relative continuous current I<sub>c red</sub> / I<sub>cw</sub> vs. supply temperature  $\vartheta_V (\vartheta_{nV} = 25 \text{ °C})$ 



L1C motor with terminal

### **Selection of Direct Drives for Linear Motions**

#### **Cycled applications**

In cycled operation, sequential positioning movements are interspersed with pauses during which no motion takes place.

A simple positioning sequence takes the form of a positively accelerated motion

followed by a deceleration (negative acceleration of usually the same magnitude, in which case acceleration and deceleration time are equal). The maximum speed  $v_{max}$  is reached at the end of an acceleration phase.



A cycle is described in the v(t) diagram (v: speed, t: time). The diagram shows a forward-backward movement with pauses ( $t_M$ : motion time,  $t_P$ : dwell time with no load).

v-t diagram for cycled operation

This yields the following a(t) diagram as well as the curve for the force required for the motion:  $\mathbf{F} = \mathbf{m} \cdot \mathbf{a}$ 

(F: force in N, m: mass in kg, a: acceleration in  $m/s^2$ ).



The motor is selected according to three criteria in accordance with the force curve for a desired cycle:

- maximum force in the cycle  $\leq F_P$ according to the data sheet
- effective force in the cycle  $\leq F_c$ (motor non cooled) or  $F_{cw}$  (motor water-cooled) according to the data sheet
- maximum speed in the cycle  $\leq v_{lp}$ according to the data sheet

a-t diagram for cycled operation

The effective force is equal to the root mean square of the force curve (here: six force cycles) in the cycle.

$$F_{eff} = \sqrt{\frac{F_1^2 \cdot t_1 + F_2^2 \cdot t_2 + \dots + F_6^2 \cdot t_6}{t_1 + t_2 + \dots + t_6}}$$

The safety factor 1.4 in the sample calculation (page 19) also takes into account the operation of the motor in the non-linear region of the force-current characteristic, for which the formula for calculating  $F_{eff}$  only applies approximately.

The forces

 $F_1 = F; F_2 = -F; F_3 = 0; F_4 = -F;$   $F_5 = F; F_6 = 0$  and the times  $t_1 = t_M/2; t_2 = t_M/2; t_3 = t_P; t_4 = t_M/2;$   $t_5 = t_M/2; t_6 = t_P$  are used to calculate the effective force.

$$F_{eff} = F \cdot \sqrt{\frac{t_M}{t_M + t_P}}$$

This formula applies to the effective force only if all the forces acting in the cycle have the same magnitude (masses and accelerations are constant). Here, the term under the square root is the "sum of motion times divided by the total sum of motion times plus pause times". The denominator is therefore the cycle time.

Acceleration and maximum speed of a positioning motion are calculated with the following formulas:



The described positioning motion is performed with a (theoretically) infinite rate of jerk. If jerk limitation is programmed into the servo converter then the positioning times are extended accordingly. In this case, greater acceleration would be needed in order to maintain unchanged positioning times.

#### **Example: Cycled applications**

#### Preset values:

| Total stroke [m] | 0.7 |
|------------------|-----|
| Motion time [s]  | 0.3 |
| Cycle time [s]   | 1.3 |

| Mass [kg]          | 10  |
|--------------------|-----|
| Friction force [N] | 5   |
| Safety factor      | 1.4 |

#### **Calculation:**

Maximum speed

$$v_{max} = \frac{2 \cdot 0.7}{0.3} m/s = 4.67 m/s$$

Acceleration

 $a = \frac{4 \cdot 0.7}{0.3^2} m/s^2 = 31.1 m/s^2$ 

Together with the friction force and the safety factor, this yields: maximum force

$$F_{eff} = (10.0 \text{ kg} \cdot 31.1 \text{ m/s}^2 \cdot \sqrt{\frac{0.3 \text{ s}}{1.3 \text{ s}}} + 5 \text{ N}) \cdot 1.4 = 216.2 \text{ N}$$

 $F_{max} = (10.0 \text{ kg} \cdot 31.1 \text{ m/s}^2 + 5 \text{ N}) \cdot 1.4 = 442.4 \text{ N}$ 

Effective force

### Motor selection, without water cooling

Compliance with conditions:

 $F_{max} \! \leq F_{p} \text{ and } F_{eff} \! \leq F_{c}$ 

The L1A-3P-200-75-WM meets both conditions.

The speed can be achieved with a link voltage of 600 V.

#### Motor selection, with water cooling

Compliance with conditions:  $F_{max} \leq F_p \text{ and } F_{eff} \leq F_{cw}$ 

The cooling plate increases the accelerated mass by 500 g, and taking the additional mass into account the L1C-3P-100-75-WM with water cooling meets both conditions. The speed can be achieved with a link voltage of 600 V.

### **L1 Linear Motors** Sizes L1A, L1B

| Туре          | Length L <sub>1</sub><br>[mm] | Width B<br>[mm] | Height H<br>[mm] | Peak force F <sub>p</sub><br>[N] | Continuous force<br>non cooled F <sub>c</sub> [N] |
|---------------|-------------------------------|-----------------|------------------|----------------------------------|---------------------------------------------------|
| L1A-3P-100-25 | 113                           | 57              | 31 - 0.1         | 169                              | 37                                                |
| L1A-3P-100-50 | 113                           | 82              | 31 - 0.1         | 338                              | 81                                                |
| L1A-3P-100-75 | 113                           | 107             | 31 - 0.1         | 505                              | 116                                               |
| L1A-3P-200-25 | 208                           | 57              | 31 - 0.1         | 338                              | 72                                                |
| L1A-3P-200-50 | 208                           | 82              | 31 - 0.1         | 677                              | 148                                               |
| L1A-3P-200-75 | 208                           | 107             | 31 - 0.1         | 1010                             | 225                                               |

Page 24 to 33

| Туре                           | Length L <sub>1</sub><br>[mm] | Width B Height H<br>[mm] [mm] |                      | Peak force F <sub>p</sub><br>[N] | Continuous force<br>non cooled F <sub>c</sub> [N] |  |
|--------------------------------|-------------------------------|-------------------------------|----------------------|----------------------------------|---------------------------------------------------|--|
| L1B-3P-100-25<br>L1B-3P-100-50 | 113<br>113                    | 57<br>82                      | 39 - 0.1<br>39 - 0.1 | 171<br>340                       | 52<br>106                                         |  |
| L1B-3P-100-75                  | 113                           | 107                           | 39 - 0.1             | 507                              | 159                                               |  |
| L1B-3P-200-25<br>L1B-3P-200-50 | 208<br>208                    | 57<br>82                      | 39 - 0.1<br>39 - 0.1 | 341<br>679                       | 100<br>200                                        |  |
| L1B-3P-200-75                  | 208                           | 107                           | 39 - 0.1             | 1014                             | 299                                               |  |
| L1B-3P-300-25                  | 303                           | 57                            | 39 - 0.1             | 512                              | 147                                               |  |
| L1B-3P-300-50                  | 303                           | 82                            | 39 - 0.1             | 1019                             | 292                                               |  |
| L1B-3P-300-75                  | 303                           | 107                           | 39 - 0.1             | 1521                             | 436                                               |  |

Page 34 to 47



### **L1 Linear Motors** Sizes L1C

|                | _                     | _                                     |                                 | _                         |                               | _                          |
|----------------|-----------------------|---------------------------------------|---------------------------------|---------------------------|-------------------------------|----------------------------|
| Туре           | Length L <sub>1</sub> | Width B                               | Height H                        | Peak force F <sub>p</sub> | Continuous force              | Continuous force           |
|                | [mm]                  | [mm]                                  | [mm]                            | [N]                       | non cooled F <sub>c</sub> [N] | cooled F <sub>cw</sub> [N] |
|                |                       | depending on the<br>thread-on variant | depending on cooling<br>options |                           |                               |                            |
| L1C-3P-100-50  | 113                   | 82                                    | 53.5/65.5/66.5                  | 439                       | 131                           | 249                        |
| L1C-3P-100-75  | 113                   | 107/110                               | 53.5/65.5/66.5                  | 656                       | 196                           | 395                        |
| L1C-3P-100-100 | 113                   | 132                                   | 53.5/65.5/66.5                  | 870                       | 259                           | 543                        |
| L1C-3P-100-125 | 113                   | 157/160                               | 53.5/65.5/66.5                  | 1082                      | 322                           | 691                        |
| L1C-3P-100-150 | 113                   | 182                                   | 53.5/65.5/66.5                  | 1293                      | 387                           | 838                        |
|                |                       |                                       |                                 |                           |                               |                            |
| L1C-3P-200-50  | 208                   | 82                                    | 53.5/65.5/66.5                  | 878                       | 247                           | 488                        |
| L1C-3P-200-75  | 208                   | 107/110                               | 53.5/65.5/66.5                  | 1311                      | 366                           | 776                        |
| L1C-3P-200-100 | 208                   | 132                                   | 53.5/65.5/66.5                  | 1740                      | 487                           | 1067                       |
| L1C-3P-200-125 | 208                   | 157/160                               | 53.5/65.5/66.5                  | 2165                      | 605                           | 1357                       |
| L1C-3P-200-150 | 208                   | 182                                   | 53.5/65.5/66.5                  | 2586                      | 724                           | 1645                       |
| 11C-3P-300-50  | 303                   | 82                                    | 53 5/65 5/66 5                  | 1317                      | 361                           | 728                        |
| L1C-3P-300-75  | 303                   | 107/110                               | 53 5/65 5/66 5                  | 1967                      | 540                           | 1157                       |
| L1C-3P-300-100 | 303                   | 132                                   | 53 5/65 5/66 5                  | 2610                      | 717                           | 1500                       |
| L1C-3P-300-125 | 303                   | 157/160                               | 53 5/65 5/66 5                  | 2010                      | 800                           | 2022                       |
| L1C 2D 200 150 | 202                   | 192                                   | 55.5/05.5/00.5                  | 2070                      | 1066                          | 2022                       |
| LIC-3F-300-130 | 202                   | 102                                   | 55.57 05.57 00.5                | 5070                      | 1000                          | 2432                       |
| L1C-3P-400-50  | 398                   | 82                                    | 53.5/65.5/66.5                  | 1757                      | 480                           | 967                        |
| L1C-3P-400-75  | 398                   | 107/110                               | 53.5/65.5/66.5                  | 2622                      | 709                           | 1538                       |
| L1C-3P-400-100 | 398                   | 132                                   | 53.5/65.5/66.5                  | 3480                      | 942                           | 2113                       |
| L1C-3P-400-125 | 398                   | 157/160                               | 53.5/65.5/66.5                  | 4330                      | 1169                          | 2688                       |
| L1C-3P-400-150 | 398                   | 182                                   | 53.5/65.5/66.5                  | 5171                      | 1399                          | 3259                       |
| Page 48 to 65  |                       |                                       |                                 |                           |                               |                            |

An overview of peak and continuous forces for the individual motor series can be found on the inside of the back cover.

### L1 Linear Motors Features

L1 linear motors are slotted, permanent magnet-excited AC synchronous motors. The coils of the primary part are fitted in slots on the armature stamping. The secondary part comprises an iron base onto which permanent magnets are fastened.

L1 motors are optimised for ultimate efficiency, which means: maximum force in the available installation space at nominal speed with low power losses. They excel by low accelerated mass and compact dimensions.

The benefits of the L1 motors include an optimal design and thermal integration into the peripheral structure as well as comprehensive adjustment to the overall requirements of the drive system.

#### Linear motor: L1A

- Installation height of only 31 mm
- Very compact design
- Excellent force-to-mass ratio

#### Linear motor: L1B

- Installation height of only 39 mm
- Applications with optimised thermal power loss in comparison to L1A
- Higher continuous force than L1A with the same heat generation

#### Linear motor: L1C

- Installation height 53.5 mm (without cooling plate), 65.5 mm (with cooling plate) or 66.5 mm (with cooling plate and thermal insulation)
- Applications with optimised thermal power loss in comparison to L1B
- Higher continuous force than L1B with equal heat generation
- Cooling options: Cooling plate, thermal insulation to machine bed



L1 motor with cable connection



L1 motor with terminal

### **L1 Linear Motors** Areas of use, applications, advantages

#### Areas of use

· Semiconductor industry

• Packaging industry

Food industry

• Machine tools

• Printed circuit-board processing

• Placement at production lines

• Assembly and handling technology

#### Applications

Applications with high requirements in terms of accuracy and dynamic performance, plus with limited installation space

- Feed systems
- Laser/water jet cutting systems
- Manipulator operation
- PCB handling systems
- Wafer positioning systems
- AOI systems

#### Advantages

- High acceleration and deceleration capacity thanks to a significantly better force-to-mass ratio than conventional motors
- Higher speed than conventional motors
- High static and dynamic load rigidity
- Accurate positioning without overshooting
- Excellent constant-velocity properties
- Compact design
- Maintenance-free drive with zero
   backlash
- Active cooling options



LDDS60 push rod system with a stroke of 170 mm



MKUVS42-LM - high-speed handling



Handling system precision blanking with direct drives

## **L1A Linear Motors** Type designation for primary parts

|                    |                                                                                                             |                        | Primary pa     | art                      |                    |      |
|--------------------|-------------------------------------------------------------------------------------------------------------|------------------------|----------------|--------------------------|--------------------|------|
|                    |                                                                                                             |                        | <u>L1A - 3</u> | <u>P - L - B - X - X</u> | <u>X - X - X -</u> | PRIM |
| Type, o<br>L1<br>A | <b>lesign</b><br>Linear motor (primary part), la<br>Flat                                                    | aminated               |                |                          |                    |      |
| Numbe<br>3P        | <b>er of motor phases</b><br>3-phase                                                                        |                        |                |                          |                    |      |
| Length             | <b>classification of coil system</b><br>100 mm, 200 mm                                                      |                        |                |                          |                    |      |
| Width              | <b>of magnetic track</b><br>25 mm, 50 mm, 75 mm                                                             |                        |                |                          |                    |      |
| Windir<br>WM<br>WX | n <b>g design</b><br>Standard<br>Special variant                                                            |                        |                |                          |                    |      |
| Cooling<br>O<br>S  | <b>g variant</b><br>Standard (without)<br>Special variant                                                   |                        |                |                          |                    |      |
| Tempe<br>O<br>S    | <b>rature monitoring</b><br>Standard (PTC triple sensors a<br>KTY84-130 on one phase)<br>Special variant    | at the phases U, V, W, |                |                          |                    |      |
| Connee<br>G<br>W   | c <b>tion variant</b><br>Standard, fixed cables for mo<br>Cable length 1.0 m<br>Terminal<br>Special variant | tor and sensor         |                |                          |                    |      |
| Motor              | nort                                                                                                        |                        |                |                          |                    |      |

Motor part PRIM Primary part

### L1A Linear Motors

### Type designation for secondary parts for L1A and L1B



SEK Secondary part

### **L1A Linear Motors**

Standard: Primary part with cable connection, secondary part with through-bore (variant 2)



### **L1A Linear Motors**

Primary part with terminal, secondary part with tapped bore (variant 1)



### **L1A-3P-100-B** Technical data I

| Primary part                          | Symbol                          | Unit    | L1A-3P-<br>100-25-<br>WM | L1A-3P-<br>100-50-<br>WM | L1A-3P-<br>100-75-<br>WM |  |
|---------------------------------------|---------------------------------|---------|--------------------------|--------------------------|--------------------------|--|
|                                       |                                 |         | ·····                    | ·····                    |                          |  |
| Length                                | L <sub>1</sub>                  | mm      | 113                      | 113                      | 113                      |  |
| Width                                 | B <sub>1</sub>                  | mm      | 57                       | 82                       | 107                      |  |
| Height                                | H <sub>1</sub>                  | mm      | 20.2                     | 20.2                     | 20.2                     |  |
| Mass                                  | m <sub>1</sub>                  | kg      | 0.5                      | 0.8                      | 1.2                      |  |
| Thread M5, quantity (length x width)  |                                 | -       | 3 x 1                    | 3 x 2                    | 3 x 2                    |  |
| Thread M5, distance/length            | n <sub>l</sub> x c <sub>1</sub> | mm      | 2 x 31.5                 | 2 x 31.5                 | 2 x 31.5                 |  |
| Thread M5, distance/width             | n <sub>b</sub> x b <sub>1</sub> | mm      | -                        | 1 x 30                   | 1 x 55                   |  |
| Motor cable diameter                  | d <sub>K</sub>                  | mm      | 7.3                      | 7.3                      | 7.3                      |  |
| Standard: Secondary part, through-    |                                 |         |                          |                          |                          |  |
| bore (variant 2)                      |                                 |         |                          |                          |                          |  |
| Width                                 | Ba                              | mm      | 50                       | 80                       | 100                      |  |
| Mass. length 38/length 152            | m <sub>2</sub>                  | kg/unit | 0.11/0.44                | 0.19/0.76                | 0.24/0.96                |  |
| Height of magnetic base               | h <sub>2</sub>                  | mm      | 6                        | 6                        | 6                        |  |
| Height                                | H <sub>2</sub>                  | mm      | 10                       | 10                       | 10                       |  |
| Through-bore for screw M5 DIN 6912    | b <sub>2</sub>                  | mm      | 37                       | 62                       | 87                       |  |
|                                       | - 5                             |         |                          |                          |                          |  |
| Secondary part, tapped bore           |                                 |         |                          |                          |                          |  |
| (variant 1)                           |                                 |         |                          |                          |                          |  |
| Width                                 | B <sub>2</sub>                  | mm      | 30                       | 50                       | 80                       |  |
| Mass, length 38/length 152            | m <sub>2</sub>                  | kg/unit | 0.076/0.30               | 0.13/0.52                | 0.21/0.84                |  |
| Height of magnetic base               | h <sub>2</sub>                  | mm      | 6                        | 6                        | 6                        |  |
| Height                                | H <sub>2</sub>                  | mm      | 10                       | 10                       | 10                       |  |
| Thread M5 (from below)                | b <sub>2</sub>                  | mm      | 15                       | 30                       | 55                       |  |
|                                       |                                 |         |                          |                          |                          |  |
| Installation dimensions: L1A-3P-L-B   |                                 |         |                          |                          |                          |  |
| Overall height PRIM + SEK             | Н                               | mm      | 31 - 0.1                 | 31 - 0.1                 | 31 - 0.1                 |  |
| Mech. air gap                         | d                               | mm      | approx. 0.8              | approx. 0.8              | approx. 0.8              |  |
| Max. width                            | В                               | mm      | 57                       | 82                       | 107                      |  |
| Length of secondary part (38 mm grid) | L <sub>2</sub>                  | mm      | L <sub>1</sub> + stroke  | L <sub>1</sub> + stroke  | L <sub>1</sub> + stroke  |  |
| Cable length                          | L <sub>K</sub>                  | mm      | ≈ 1000                   | ≈ 1000                   | ≈ 1000                   |  |

**Note:** The size specified for the air gap d is an auxiliary dimension and may fluctuate. The only technically relevant dimension is the specified overall installation height H, which must be complied with. A stainless steel cover can be ordered separately for the secondary parts. (The stainless steel cover is not included in the standard equipment.) Subject to modification without previous notice.

### L1A-3P-100-B Technical data II

| Performance data                             | Symbol           | Unit    | L1A-3P-<br>100-25-<br>WM | L1A-3P-<br>100-50-<br>WM | L1A-3P-<br>100-75-<br>WM |
|----------------------------------------------|------------------|---------|--------------------------|--------------------------|--------------------------|
| Ultimate force at I <sub>u</sub>             | Fu               | Ν       | 199                      | 398                      | 594                      |
| Peak force (saturation range) at $I_p$       | Fp               | Ν       | 169                      | 338                      | 505                      |
| Peak force (linear range) at I <sub>pl</sub> | F <sub>pl</sub>  | Ν       | 117                      | 235                      | 351                      |
| Continuous force at ${\rm I}_{\rm c}$        | Fc               | Ν       | 37                       | 81                       | 116                      |
| Power loss at I <sub>p</sub> (25 °C)         | P <sub>lp</sub>  | W       | 469                      | 682                      | 895                      |
| Power loss at I <sub>pl</sub> (25 °C)        | P <sub>lpl</sub> | W       | 163                      | 238                      | 312                      |
| Power loss at I <sub>c</sub> (25 °C)         | P <sub>lc</sub>  | W       | 17                       | 28                       | 34                       |
| Motor constant (25 °C)                       | k <sub>m</sub>   | N/√W    | 9.2                      | 15.2                     | 19.9                     |
| Damping constant (short-circuit)             | k <sub>d</sub>   | N/(m/s) | 84                       | 232                      | 394                      |
| Electric time constant                       | $\tau_{el}$      | ms      | 2.75                     | 3.78                     | 4.32                     |
| Attraction force                             | Fa               | Ν       | 584                      | 1168                     | 1752                     |
| Ripple force (typical cogging)               | Fr               | Ν       | 6                        | 12                       | 18                       |
| Pole pair width                              | 2τ <sub>p</sub>  | mm      | 38                       | 38                       | 38                       |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "attraction force" and "ripple force": ±10%



The achievable speed limit depends on operating voltage (U<sub>DCL</sub>) and current (force).

The diagram shows the idealised envelope with the key operating points at peak current ( $F_p$ ,  $v_{lim}$ ) and at idle ( $F_o$ ,  $v_o$ ).

Force vs. speed

### L1A-3P-100-B Technical data III

| Winding data                                                    | Symbol           | Unit               | L1A-3P-<br>100-25-<br>WM | L1A-3P-<br>100-50-<br>WM | L1A-3P-<br>100-75-<br>WM |
|-----------------------------------------------------------------|------------------|--------------------|--------------------------|--------------------------|--------------------------|
| Force constant                                                  | k <sub>f</sub>   | N/A <sub>rms</sub> | 17.4                     | 34.9                     | 52.1                     |
| Back EMF constant, phase-to-phase                               | k <sub>u</sub>   | V/(m/s)            | 14.3                     | 28.5                     | 42.6                     |
| Limit speed at $I_p$ and $U_{DCL}$ = 300 $V_{DC}$               | V <sub>lim</sub> | m/s                | 13.0                     | 6.0                      | 3.8                      |
| Limit speed at $I_{\rm p}$ and $U_{\rm DCL}$ = 600 $V_{\rm DC}$ | V <sub>lim</sub> | m/s                | 27.3                     | 13.2                     | 8.6                      |
| Electric resistance, phase-to-phase (25 °C)                     | R <sub>25</sub>  | Ω                  | 2.40                     | 3.49                     | 4.58                     |
| Inductance, phase-to-phase                                      | L                | mH                 | 6.60                     | 13.20                    | 19.80                    |
| Ultimate current                                                | l <sub>u</sub>   | A <sub>rms</sub>   | 14.3                     | 14.3                     | 14.3                     |
| Peak current (in the saturation range)                          | ۱ <sub>p</sub>   | A <sub>rms</sub>   | 11.4                     | 11.4                     | 11.4                     |
| Peak current (linear range)                                     | I <sub>pl</sub>  | A <sub>rms</sub>   | 6.7                      | 6.7                      | 6.7                      |
| Continuous current                                              | ۱ <sub>с</sub>   | A <sub>rms</sub>   | 2.1                      | 2.3                      | 2.2                      |
| Permissible temperature (at sensor)                             | θ                | °C                 | 100                      | 100                      | 100                      |
| Max. link voltage                                               | U <sub>DCL</sub> | V                  | 600                      | 600                      | 600                      |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "resistance" and "inductance": ±10%



#### Force vs. current

Note:

The winding variant WM (standard) described above is suitable for moderately dynamic performance requirements. The winding variants WL and WH suitable for lower and higher dynamic performance requirements are available upon request. The integrated temperature sensors do not display the exact winding temperature. Depending on current load, the winding temperature may be up to approx. 30 K higher.

### L1A-3P-200-B Technical data I

| Primary part                          | Symbol                          |         | L1A-3P-        | L1A-3P-        | L1A-3P-                 |  |
|---------------------------------------|---------------------------------|---------|----------------|----------------|-------------------------|--|
|                                       |                                 |         | 200-25-        | 200-50-        | 200-75-                 |  |
|                                       |                                 |         | WM             | WM             | WM                      |  |
| Length                                | L <sub>1</sub>                  | mm      | 208            | 208            | 208                     |  |
| Width                                 | B <sub>1</sub>                  | mm      | 57             | 82             | 107                     |  |
| Height                                | H <sub>1</sub>                  | mm      | 20.2           | 20.2           | 20.2                    |  |
| Mass                                  | m <sub>1</sub>                  | kg      | 0.9            | 1.6            | 2.2                     |  |
| Thread M5, quantity (length x width)  | -                               | -       | 6 x 1          | 6 x 2          | 6 x 2                   |  |
| Thread M5, distance/length            | n <sub>l</sub> x c <sub>1</sub> | mm      | 5 x 31.5       | 5 x 31.5       | 5 x 31.5                |  |
| Thread M5, distance/width             | n <sub>b</sub> x b <sub>1</sub> | mm      | -              | 1 x 30         | 1 x 55                  |  |
| Motor cable diameter                  | d <sub>K</sub>                  | mm      | 7.3            | 7.3            | 7.3                     |  |
| Chan david Cassan dama a set Alwa wak |                                 |         |                |                |                         |  |
| boro (variant 2)                      |                                 |         |                |                |                         |  |
|                                       |                                 |         |                |                |                         |  |
| Width                                 | B <sub>2</sub>                  | mm      | 50             | 80             | 100                     |  |
| Mass, length 38/length 152            | m <sub>2</sub>                  | kg/unit | 0.11/0.44      | 0.19/0.76      | 0.24/0.96               |  |
| Height of magnetic base               | h <sub>2</sub>                  | mm      | 6              | 6              | 6                       |  |
| Height                                | H <sub>2</sub>                  | mm      | 10             | 10             | 10                      |  |
| Through-bore for screw M5 DIN 6912    | b <sub>3</sub>                  | mm      | 37             | 62             | 87                      |  |
| Secondary part, tapped bore           |                                 |         |                |                |                         |  |
| (variant 1)                           |                                 |         |                |                |                         |  |
| Width                                 | B <sub>2</sub>                  | mm      | 30             | 50             | 80                      |  |
| Mass, length 38/length 152            | m <sub>2</sub>                  | kg/unit | 0.076/0.30     | 0.13/0.52      | 0.21/0.84               |  |
| Height of magnetic base               | h <sub>2</sub>                  | mm      | 6              | 6              | 6                       |  |
| Height                                | H <sub>2</sub>                  | mm      | 10             | 10             | 10                      |  |
| Thread M5 (from below)                | b <sub>2</sub>                  | mm      | 15             | 30             | 55                      |  |
|                                       |                                 |         |                |                |                         |  |
| Installation dimensions: L1A-3P-L-B   |                                 |         |                |                |                         |  |
| Overall height PRIM + SEK             | Н                               | mm      | 31 - 0.1       | 31 - 0.1       | 31 - 0.1                |  |
| Mech. air gap                         | d                               | mm      | approx. 0.8    | approx. 0.8    | approx. 0.8             |  |
| Max. width                            | В                               | mm      | 57             | 82             | 107                     |  |
| Length of secondary part (38 mm grid) | L <sub>2</sub>                  | mm      | $L_1$ + stroke | $L_1$ + stroke | L <sub>1</sub> + stroke |  |
| Cable length                          | L <sub>K</sub>                  | mm      | ≈ 1000         | ≈ 1000         | ≈ 1000                  |  |

Note: The size specified for the air gap d is an auxiliary dimension and may fluctuate. The only technically relevant dimension is the specified overall installation height H, which must be complied with. A stainless steel cover can be ordered separately for the secondary parts. (The stainless steel cover is not included in the standard equipment.) Subject to modification without previous notice.

### L1A-3P-200-B Technical data II

| Performance data                             | Symbol           | Unit    | L1A-3P- | L1A-3P- | L1A-3P- |
|----------------------------------------------|------------------|---------|---------|---------|---------|
|                                              |                  |         | 200-25- | 200-50- | 200-75- |
|                                              |                  |         | WM      | WM      | WM      |
| Ultimate force at I <sub>u</sub>             | F <sub>u</sub>   | Ν       | 398     | 796     | 1188    |
| Peak force (saturation range) at ${\rm I_p}$ | Fp               | Ν       | 338     | 677     | 1010    |
| Peak force (linear range) at I <sub>pl</sub> | F <sub>pl</sub>  | Ν       | 235     | 470     | 701     |
| Nominal force at I <sub>c</sub>              | Fc               | Ν       | 72      | 148     | 225     |
|                                              |                  |         |         |         |         |
| Power loss at I <sub>p</sub> (25 °C)         | P <sub>lp</sub>  | W       | 938     | 1364    | 1774    |
| Power loss at I <sub>pl</sub> (25 °C)        | P <sub>lpl</sub> | W       | 327     | 475     | 618     |
| Power loss at I <sub>c</sub> (25 °C)         | P <sub>lc</sub>  | W       | 31      | 47      | 64      |
|                                              |                  |         |         |         |         |
| Motor constant (25 °C)                       | k <sub>m</sub>   | N/√W    | 13.0    | 21.6    | 28.2    |
| Damping constant (short-circuit)             | k <sub>d</sub>   | N/(m/s) | 169     | 465     | 796     |
| Electric time constant                       | $\tau_{el}$      | ms      | 2.99    | 4.11    | 4.74    |
|                                              |                  |         |         |         |         |
| Attraction force                             | Fa               | Ν       | 1128    | 2256    | 3383    |
| Ripple force (typical cogging)               | Fr               | Ν       | 7       | 14      | 21      |
| Pole pair width                              | 2τ <sub>p</sub>  | mm      | 38      | 38      | 38      |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "attraction force" and "ripple force": ±10%



The achievable speed limit depends on operating voltage (U<sub>DCL</sub>) and current (force).

The diagram shows the idealised envelope with the key operating points at peak current ( $F_p$ ,  $v_{lim}$ ) and at idle ( $F_o$ ,  $v_o$ ).

### L1A-3P-200-B Technical data III

| Winding data                                                             | Symbol           | Unit               | L1A-3P-<br>200-25-<br>WM | L1A-3P-<br>200-50-<br>WM | L1A-3P-<br>200-75-<br>WM |
|--------------------------------------------------------------------------|------------------|--------------------|--------------------------|--------------------------|--------------------------|
| Force constant                                                           | k <sub>f</sub>   | N/A <sub>rms</sub> | 34.9                     | 69.8                     | 75.0                     |
| Back EMF constant, phase-to-phase                                        | k <sub>u</sub>   | V/(m/s)            | 28.5                     | 57.1                     | 61.4                     |
| Limit speed at I <sub>p</sub> and U <sub>DCL</sub> = 300 V <sub>DC</sub> | V <sub>lim</sub> | m/s                | 5.5                      | 2.3                      | 2.2                      |
| Limit speed at $\rm I_p$ and $\rm U_{DCL}$ = 600 $\rm V_{DC}$            | V <sub>lim</sub> | m/s                | 12.7                     | 5.9                      | 5.6                      |
| Electric resistance, phase-to-phase (25 °C)                              | R <sub>25</sub>  | Ω                  | 4.80                     | 6.98                     | 4.72                     |
| Inductance, phase-to-phase                                               | L                | mH                 | 14.35                    | 28.70                    | 22.36                    |
| Ultimate current                                                         | l <sub>u</sub>   | A <sub>rms</sub>   | 14.3                     | 14.3                     | 19.8                     |
| Peak current (in the saturation range)                                   | l <sub>p</sub>   | A <sub>rms</sub>   | 11.4                     | 11.4                     | 15.8                     |
| Peak current (linear range)                                              | I <sub>pl</sub>  | A <sub>rms</sub>   | 6.7                      | 6.7                      | 9.3                      |
| Continuous current                                                       | ۱ <sub>с</sub>   | A <sub>rms</sub>   | 2.1                      | 2.1                      | 3.0                      |
| Permissible temperature (at sensor)                                      | θ                | °C                 | 100                      | 100                      | 100                      |
| Max. link voltage                                                        | U <sub>DCL</sub> | V                  | 600                      | 600                      | 600                      |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "resistance" and "inductance": ±10%



#### Note:

The winding variant WM (standard) described above is suitable for moderately dynamic performance requirements. The winding variants WL and WH suitable for lower and higher dynamic performance requirements are available upon request. The integrated temperature sensors do not display the exact winding temperature. Depending on current load, the winding temperature may be up to approx. 30 K higher.

Force vs. current

## **L1B Linear Motors** Type designation for primary parts

|                    |                                                                                                          |                        | Primary par             | rt       |          |      |  |
|--------------------|----------------------------------------------------------------------------------------------------------|------------------------|-------------------------|----------|----------|------|--|
|                    |                                                                                                          |                        | <u>L1B</u> - <u>3</u> F | <u> </u> | <u> </u> | PRIM |  |
| Type, o<br>L1<br>B | <b>design</b><br>Linear motor (primary part), la<br>High                                                 | aminated               |                         |          |          |      |  |
| Numbe<br>3P        | <b>er of motor phases</b><br>3-phase                                                                     |                        |                         |          |          |      |  |
| Length             | <b>1 classification of coil system</b><br>100 mm, 200 mm                                                 |                        |                         |          |          |      |  |
| Width              | <b>of magnetic track</b><br>25 mm, 50 mm, 75 mm                                                          |                        |                         |          |          |      |  |
| Windir<br>WM<br>WX | <b>ng design</b><br>Standard<br>Special variant                                                          |                        |                         |          |          |      |  |
| Coolin<br>O<br>S   | <b>g variant</b><br>Standard (without)<br>Special variant                                                |                        |                         |          |          |      |  |
| Tempe<br>O<br>S    | <b>rature monitoring</b><br>Standard (PTC triple sensors a<br>KTY84-130 on one phase)<br>Special variant | at the phases U, V, W, |                         |          |          |      |  |
| Conne<br>G         | <b>ction variant</b><br>Standard, fixed cables for mo                                                    | tor and sensor         |                         |          |          |      |  |
| W<br>S             | Cable length 1.0 m<br>Terminal<br>Special variant                                                        |                        |                         |          |          |      |  |
| Motor              | nart                                                                                                     |                        |                         |          |          |      |  |

Motor part PRIM Primary part

### L1B Linear Motors

### Type designation for secondary parts for L1A and L1B



SEK Secondary part

### **L1B Linear Motors**

Standard: Primary part with cable connection, secondary part with through-bore (variant 2)


### **L1B Linear Motors**

Primary part with terminal, secondary part with tapped bore (variant 1)



# L1B-3P-100-B Technical data I

| Primary part                          | Symbol                          | Unit    | L1B-3P-<br>100-25-      | L1B-3P-<br>100-50-      | L1B-3P-<br>100-75- |
|---------------------------------------|---------------------------------|---------|-------------------------|-------------------------|--------------------|
|                                       |                                 |         | WM                      | WM                      | WM                 |
| Length                                | L <sub>1</sub>                  | mm      | 113                     | 113                     | 113                |
| Width                                 | B <sub>1</sub>                  | mm      | 57                      | 82                      | 107                |
| Height                                | H <sub>1</sub>                  | mm      | 28.2                    | 28.2                    | 28.2               |
| Mass                                  | m <sub>1</sub>                  | kg      | 0.7                     | 1.2                     | 1.7                |
| Thread M5, quantity (length x width)  | -                               | -       | 3 x 1                   | 3 x 2                   | 3 x 2              |
| Thread M5, distance/length            | n <sub>l</sub> x c <sub>1</sub> | mm      | 2 x 31.5                | 2 x 31.5                | 2 x 31.5           |
| Thread M5, distance/width             | n <sub>b</sub> x b <sub>1</sub> | mm      | -                       | 1 x 30                  | 1 x 55             |
| Motor cable diameter                  | d <sub>K</sub>                  | mm      | 7.3                     | 7.3                     | 7.3                |
| Standard: Secondary part, through-    |                                 |         |                         |                         |                    |
| bore (variant 2)                      |                                 |         |                         |                         |                    |
| Width                                 | B <sub>2</sub>                  | mm      | 50                      | 80                      | 100                |
| Mass, length 38/length 152            | m <sub>2</sub>                  | kg/unit | 0.11/0.44               | 0.19/0.76               | 0.24/0.96          |
| Height of magnetic base               | h <sub>2</sub>                  | mm      | 6                       | 6                       | 6                  |
| Height                                | H <sub>2</sub>                  | mm      | 10                      | 10                      | 10                 |
| Through-bore for screw M5 DIN 6912    | b <sub>3</sub>                  | mm      | 37                      | 62                      | 87                 |
| Secondary part, tapped bore           |                                 |         |                         |                         |                    |
| (variant 1)                           |                                 |         |                         |                         |                    |
| Width                                 | B <sub>2</sub>                  | mm      | 30                      | 50                      | 80                 |
| Mass, length 38/length 152            | m <sub>2</sub>                  | kg/unit | 0.076/0.30              | 0.13/0.52               | 0.21/0.84          |
| Height of magnetic base               | h <sub>2</sub>                  | mm      | 6                       | 6                       | 6                  |
| Height                                | H <sub>2</sub>                  | mm      | 10                      | 10                      | 10                 |
| Thread M5 (from below)                | b <sub>2</sub>                  | mm      | 15                      | 30                      | 55                 |
| Installation dimensions: L1B-3P-L-B   |                                 |         |                         |                         |                    |
| Overall height PRIM + SEK             | Н                               | mm      | 39 - 0.1                | 39 - 0.1                | 39 - 0.1           |
| Mech. air gap                         | d                               | mm      | approx. 0.8             | approx. 0.8             | approx. 0.8        |
| Max. width                            | В                               | mm      | 57                      | 82                      | 107                |
| Length of secondary part (38 mm grid) | L <sub>2</sub>                  | mm      | L <sub>1</sub> + stroke | L <sub>1</sub> + stroke | $L_1$ + stroke     |
| Cable length                          | L <sub>K</sub>                  | mm      | ≈ 1000                  | ≈ 1000                  | ≈ 1000             |

**Note:** The size specified for the air gap d is an auxiliary dimension and may fluctuate. The only technically relevant dimension is the specified overall installation height H, which must be complied with. A stainless steel cover can be ordered separately for the secondary parts. (The stainless steel cover is not included in the standard equipment.) Subject to modification without previous notice.

### L1B-3P-100-B Technical data II

| Performance data                             | Symbol           | Unit    | L1B-3P-<br>100-25-<br>WM | L1B-3P-<br>100-50-<br>WM | L1B-3P-<br>100-75-<br>WM |
|----------------------------------------------|------------------|---------|--------------------------|--------------------------|--------------------------|
| Ultimate force at I <sub>u</sub>             | Fu               | Ν       | 200                      | 398                      | 594                      |
| Peak force (saturation range) at ${\rm I_p}$ | Fp               | Ν       | 171                      | 340                      | 507                      |
| Peak force (linear range) at I <sub>pl</sub> | F <sub>pl</sub>  | Ν       | 113                      | 225                      | 335                      |
| Continuous force at ${\rm I}_{\rm c}$        | Fc               | Ν       | 52                       | 106                      | 159                      |
| Power loss at I <sub>p</sub> (25 °C)         | P <sub>lp</sub>  | W       | 317                      | 464                      | 610                      |
| Power loss at I <sub>pl</sub> (25 °C)        | P <sub>lpl</sub> | W       | 89                       | 130                      | 171                      |
| Power loss at I <sub>c</sub> (25 °C)         | P <sub>lc</sub>  | W       | 19                       | 29                       | 38                       |
| Motor constant (25 °C)                       | k <sub>m</sub>   | N/√W    | 12.0                     | 19.7                     | 25.6                     |
| Damping constant (short-circuit)             | k <sub>d</sub>   | N/(m/s) | 144                      | 389                      | 658                      |
| Electric time constant                       | $\tau_{el}$      | ms      | 5.19                     | 7.09                     | 8.08                     |
| Attraction force                             | Fa               | Ν       | 584                      | 1168                     | 1752                     |
| Ripple force (typical cogging)               | Fr               | Ν       | 6                        | 12                       | 18                       |
| Pole pair width                              | 2τ <sub>p</sub>  | mm      | 38                       | 38                       | 38                       |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "attraction force" and "ripple force": ±10%



The achievable speed limit depends on operating voltage (U<sub>DCL</sub>) and current (force).

Force vs. speed

# L1B-3P-100-B Technical data III

| Winding data                                                             | Symbol           | Unit               | L1B-3P-<br>100-25-<br>WM | L1B-3P-<br>100-50-<br>WM | L1B-3P-<br>100-75-<br>WM |
|--------------------------------------------------------------------------|------------------|--------------------|--------------------------|--------------------------|--------------------------|
| Force constant                                                           | k <sub>f</sub>   | N/A <sub>rms</sub> | 29.4                     | 58.5                     | 62.4                     |
| Back EMF constant, phase-to-phase                                        | k <sub>u</sub>   | V/(m/s)            | 24.1                     | 47.9                     | 51.1                     |
| Limit speed at I <sub>p</sub> and U <sub>DCL</sub> = 300 V <sub>DC</sub> | v <sub>lim</sub> | m/s                | 6.8                      | 3.1                      | 3.0                      |
| Limit speed at $\rm I_p$ and $\rm U_{DCL}$ = 600 $\rm V_{DC}$            | V <sub>lim</sub> | m/s                | 14.6                     | 7.1                      | 6.7                      |
| Electric resistance, phase-to-phase (25 °C)                              | R <sub>25</sub>  | Ω                  | 4.02                     | 5.88                     | 3.95                     |
| Inductance, phase-to-phase                                               | L                | mH                 | 20.83                    | 41.66                    | 31.92                    |
| Ultimate current                                                         | l <sub>u</sub>   | A <sub>rms</sub>   | 9.1                      | 9.1                      | 12.7                     |
| Peak current (in the saturation range)                                   | Ι <sub>p</sub>   | A <sub>rms</sub>   | 7.3                      | 7.3                      | 10.2                     |
| Peak current (linear range)                                              | I <sub>pl</sub>  | A <sub>rms</sub>   | 3.8                      | 3.8                      | 5.4                      |
| Continuous current                                                       | ۱ <sub>с</sub>   | A <sub>rms</sub>   | 1.8                      | 1.8                      | 2.5                      |
| Permissible temperature (at sensor)                                      | θ                | °C                 | 100                      | 100                      | 100                      |
| Max. link voltage                                                        | U <sub>DCL</sub> | V                  | 600                      | 600                      | 600                      |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "resistance" and "inductance": ±10%



#### Force vs. current

#### Note:

The winding variant WM (standard) described above is suitable for moderately dynamic performance requirements. The winding variants WL and WH suitable for lower and higher dynamic performance requirements are available upon request. The integrated temperature sensors do not display the exact winding temperature. Depending on current load, the winding temperature may be up to approx. 30 K higher.

### L1B-3P-200-B Technical data I

| Length L1 mm 208 208 208                                                                                                 | 5-  |
|--------------------------------------------------------------------------------------------------------------------------|-----|
| Length L1 mm 208 208 208                                                                                                 |     |
| Length L1 mm 208 208 208                                                                                                 |     |
|                                                                                                                          |     |
| Width         B1         mm         57         82         107                                                            |     |
| Height         H <sub>1</sub> mm         28.2         28.2         28.2                                                  |     |
| Mass m <sub>1</sub> kg 1.4 2.3 3.2                                                                                       |     |
| Thread M5, quantity (length x width)         -         -         6 x 1         6 x 2         6 x 2                       |     |
| Thread M5, distance/length         n <sub>l</sub> x c <sub>1</sub> mm         5 x 31.5         5 x 31.5         5 x 31.5 | 5   |
| Thread M5, distance/width         n <sub>b</sub> x b <sub>1</sub> mm         -         1 x 30         1 x 55             |     |
| Motor cable diameterd_Kmm7.37.3                                                                                          |     |
| Standard Secondary part through                                                                                          |     |
| bore (variant 2)                                                                                                         |     |
| Width B. mm 50 80 100                                                                                                    |     |
| Mass length 38/length 152 ma kg/unit 0.11/0.44 0.19/0.76 0.24/0.5                                                        | 96  |
| Height of magnetic base $h_{a}$ mm $6$ $6$ $6$                                                                           |     |
| Height H <sub>2</sub> mm 10 10 10                                                                                        |     |
| Through-hore for screw M5 DIN 6912 b <sub>2</sub> mm 37 62 87                                                            |     |
|                                                                                                                          |     |
| Secondary part, tapped bore                                                                                              |     |
| (variant 1)                                                                                                              |     |
| Width         B2         mm         30         50         80                                                             |     |
| Mass, length 38/length 152         m2         kg/unit         0.076/0.30         0.13/0.52         0.21/0.8              | 84  |
| Height of magnetic base h <sub>2</sub> mm 6 6 6                                                                          |     |
| Height H <sub>2</sub> mm 10 10 10                                                                                        |     |
| Thread M5 (from below)         b2         mm         15         30         55                                            |     |
| Installation dimensions: L1B-3P-L-B                                                                                      |     |
| Overall height PRIM + SEK H mm 39 - 0.1 39 - 0.1 39 - 0.1                                                                | 1   |
| Mech air gap d mm approx 0.8 approx 0.8 approx 0.8                                                                       | 0.8 |
| Max.width B mm 57 82 107                                                                                                 |     |
| Length of secondary part (38 mm grid) $L_2$ mm $L_4$ + stroke $L_4$ + stroke $L_4$ + stroke                              | oke |
| Cable length $L_{\rm K}$ mm $\approx 1000 \approx 1000 \approx 1000$                                                     | С   |

Note: The size specified for the air gap d is an auxiliary dimension and may fluctuate. The only technically relevant dimension is the specified overall installation height H, which must be complied with. A stainless steel cover can be ordered separately for the secondary parts. (The stainless steel cover is not included in the standard equipment.) Subject to modification without previous notice.

# L1B-3P-200-B Technical data II

| Performance data                                   | Symbol           | Unit    | L1B-3P- | L1B-3P- | L1B-3P- |
|----------------------------------------------------|------------------|---------|---------|---------|---------|
|                                                    |                  |         | 200-25- | 200-50- | 200-75- |
|                                                    |                  |         | WM      | WM      | WM      |
| Ultimate force at I <sub>u</sub>                   | F <sub>u</sub>   | Ν       | 400     | 796     | 1188    |
| Peak force (saturation range) at ${\rm I}_{\rm p}$ | Fp               | Ν       | 341     | 679     | 1014    |
| Peak force (linear range) at I <sub>pl</sub>       | F <sub>pl</sub>  | Ν       | 226     | 449     | 670     |
| Continuous force at I <sub>c</sub>                 | Fc               | Ν       | 100     | 200     | 299     |
|                                                    |                  |         |         |         |         |
| Power loss at I <sub>p</sub> (25 °C)               | P <sub>lp</sub>  | W       | 634     | 928     | 1220    |
| Power loss at I <sub>pl</sub> (25 °C)              | P <sub>lpl</sub> | W       | 177     | 260     | 341     |
| Power loss at I <sub>c</sub> (25 °C)               | P <sub>lc</sub>  | W       | 34      | 51      | 68      |
|                                                    |                  |         |         |         |         |
| Motor constant (25 °C)                             | k <sub>m</sub>   | N/√W    | 16.9    | 27.9    | 36.3    |
| Damping constant (short-circuit)                   | k <sub>d</sub>   | N/(m/s) | 287     | 777     | 1316    |
| Electric time constant                             | $\tau_{el}$      | ms      | 5.19    | 7.09    | 8.08    |
|                                                    |                  |         |         |         |         |
| Attraction force                                   | Fa               | Ν       | 1128    | 2256    | 3383    |
| Ripple force (typical cogging)                     | Fr               | Ν       | 7       | 14      | 21      |
| Pole pair width                                    | 2τ <sub>p</sub>  | mm      | 38      | 38      | 38      |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "attraction force" and "ripple force": ±10%



The achievable speed limit depends on operating voltage  $(U_{DCL})$  and current (force).

Force vs. speed

### L1B-3P-200-B Technical data III

| Winding data                                                             | Symbol           | Unit               | L1B-3P-<br>200-25-<br>WM | L1B-3P-<br>200-50-<br>WM | L1B-3P-<br>200-75-<br>WM |
|--------------------------------------------------------------------------|------------------|--------------------|--------------------------|--------------------------|--------------------------|
| Force constant                                                           | k <sub>f</sub>   | N/A <sub>rms</sub> | 29.4                     | 58.5                     | 62.4                     |
| Back EMF constant, phase-to-phase                                        | k <sub>u</sub>   | V/(m/s)            | 24.1                     | 47.9                     | 51.1                     |
| Limit speed at I <sub>p</sub> and U <sub>DCL</sub> = 300 V <sub>DC</sub> | V <sub>lim</sub> | m/s                | 6.8                      | 3.1                      | 3.0                      |
| Limit speed at $\rm I_p$ and $\rm U_{DCL}$ = 600 $\rm V_{DC}$            | V <sub>lim</sub> | m/s                | 14.6                     | 7.1                      | 6.7                      |
| Electric resistance, phase-to-phase (25 °C)                              | R <sub>25</sub>  | Ω                  | 2.01                     | 2.94                     | 1.97                     |
| Inductance, phase-to-phase                                               | L                | mH                 | 10.41                    | 20.83                    | 15.96                    |
| Ultimate current                                                         | l <sub>u</sub>   | A <sub>rms</sub>   | 18.1                     | 18.1                     | 25.4                     |
| Peak current (in the saturation range)                                   | I <sub>p</sub>   | A <sub>rms</sub>   | 14.5                     | 14.5                     | 20.3                     |
| Peak current (linear range)                                              | I <sub>pl</sub>  | A <sub>rms</sub>   | 7.7                      | 7.7                      | 10.7                     |
| Continuous current                                                       | ۱ <sub>с</sub>   | A <sub>rms</sub>   | 3.4                      | 3.4                      | 4.8                      |
| Permissible temperature (at sensor)                                      | θ                | °C                 | 100                      | 100                      | 100                      |
| Max. link voltage                                                        | U <sub>DCL</sub> | V                  | 600                      | 600                      | 600                      |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "resistance" and "inductance": ±10%



### Note:

The winding variant WM (standard) described above is suitable for moderately dynamic performance requirements. The winding variants WL and WH suitable for lower and higher dynamic performance requirements are available upon request. The integrated temperature sensors do not display the exact winding temperature. Depending on current load, the winding temperature may be up to approx. 30 K higher.

Force vs. current

# L1B-3P-300-B Technical data I

| Primary part                           | Symbol                          | Unit    | L1B-3P-<br>300-25-<br>WM | L1B-3P-<br>300-50-<br>WM | L1B-3P-<br>300-75-<br>WM |
|----------------------------------------|---------------------------------|---------|--------------------------|--------------------------|--------------------------|
|                                        |                                 |         | 202                      | 202                      | 202                      |
| Length                                 | L <sub>1</sub>                  | mm      | 303                      | 303                      | 303                      |
| Width                                  | В <sub>1</sub>                  | mm      | 5/                       | 82                       | 107                      |
| Height                                 | H <sub>1</sub>                  | mm      | 28.2                     | 28.2                     | 28.2                     |
| Mass                                   | m <sub>1</sub>                  | kg      | 2.0                      | 3.4                      | 4.8                      |
| Thread M5, quantity (length x width)   | -                               | -       | 9 x 1                    | 9 x 2                    | 9 x 2                    |
| Ihread M5, distance/length             | n <sub>l</sub> x c <sub>1</sub> | mm      | 8 x 31.5                 | 8 x 31.5                 | 8 x 31.5                 |
| Thread M5, distance/width              | n <sub>b</sub> x b <sub>1</sub> | mm      | -                        | 1 x 30                   | 1 x 55                   |
| Motor cable diameter                   | d <sub>K</sub>                  | mm      | 7.3                      | 7.3                      | 7.3                      |
| Standard: Secondary part, through-     |                                 |         |                          |                          |                          |
| bore (variant 2)                       |                                 |         |                          |                          |                          |
| Width                                  | B <sub>2</sub>                  | mm      | 50                       | 80                       | 100                      |
| Mass, length 38/length 152             | -<br>m <sub>2</sub>             | kg/unit | 0.11/0.44                | 0.19/0.76                | 0.24/0.96                |
| Height of magnetic base                | h <sub>2</sub>                  | mm      | 6                        | 6                        | 6                        |
| Height                                 | H <sub>2</sub>                  | mm      | 10                       | 10                       | 10                       |
| Through-hore for screw M5 DIN 6912     | ha                              | mm      | 37                       | 62                       | 87                       |
|                                        | 53                              |         | 5.                       | 02                       |                          |
| Secondary part, tapped bore            |                                 |         |                          |                          |                          |
| (variant 1)                            |                                 |         |                          |                          |                          |
| Width                                  | B <sub>2</sub>                  | mm      | 30                       | 50                       | 80                       |
| Mass, length 38/length 152             | m <sub>2</sub>                  | kg/unit | 0.076/0.30               | 0.13/0.52                | 0.21/0.84                |
| Height of magnetic base                | h <sub>2</sub>                  | mm      | 6                        | 6                        | 6                        |
| Height                                 | H <sub>2</sub>                  | mm      | 10                       | 10                       | 10                       |
| Thread M5 (from below)                 | b <sub>2</sub>                  | mm      | 15                       | 30                       | 55                       |
| Installation dimensions, L1P, 2D, L, P |                                 |         |                          |                          |                          |
| Instantation unitensions: LTB-3P-L-B   |                                 |         |                          |                          |                          |
| Overall height PRIM + SEK              | Н                               | mm      | 39 - 0.1                 | 39 - 0.1                 | 39 - 0.1                 |
| Mech. air gap                          | d                               | mm      | approx. 0.8              | approx. 0.8              | approx. 0.8              |
| Max. width                             | В                               | mm      | 57                       | 82                       | 107                      |
| Length of secondary part (38 mm grid)  | L <sub>2</sub>                  | mm      | L <sub>1</sub> + stroke  | L <sub>1</sub> + stroke  | $L_1$ + stroke           |
| Cable length                           | L <sub>K</sub>                  | mm      | ≈ 1000                   | ≈ 1000                   | ≈ 1000                   |

**Note:** The size specified for the air gap d is an auxiliary dimension and may fluctuate. The only technically relevant dimension is the specified overall installation height H, which must be complied with. A stainless steel cover can be ordered separately for the secondary parts. (The stainless steel cover is not included in the standard equipment.) Subject to modification without previous notice.

### L1B-3P-300-B Technical data II

| Performance data                             | Symbol           | Unit    | L1B-3P-<br>300-25-<br>WM | L1B-3P-<br>300-50-<br>WM | L1B-3P-<br>300-75-<br>WM |
|----------------------------------------------|------------------|---------|--------------------------|--------------------------|--------------------------|
| Ultimate force at I <sub>u</sub>             | Fu               | Ν       | 600                      | 1194                     | 1782                     |
| Peak force (saturation range) at $I_p$       | Fp               | Ν       | 512                      | 1019                     | 1521                     |
| Peak force (linear range) at I <sub>pl</sub> | F <sub>pl</sub>  | Ν       | 339                      | 674                      | 1005                     |
| Continuous force at I <sub>c</sub>           | Fc               | Ν       | 147                      | 292                      | 436                      |
| Power loss at I <sub>p</sub> (25 °C)         | P <sub>lp</sub>  | W       | 951                      | 1392                     | 1832                     |
| Power loss at I <sub>pl</sub> (25 °C)        | P <sub>lpl</sub> | W       | 266                      | 389                      | 512                      |
| Power loss at I <sub>c</sub> (25 °C)         | P <sub>lc</sub>  | W       | 50                       | 73                       | 96                       |
| Motor constant (25 °C)                       | k <sub>m</sub>   | N/√W    | 20.8                     | 34.1                     | 44.4                     |
| Damping constant (short-circuit)             | k <sub>d</sub>   | N/(m/s) | 431                      | 1166                     | 1972                     |
| Electric time constant                       | $\tau_{el}$      | ms      | 5.19                     | 7.09                     | 8.08                     |
| Attraction force                             | Fa               | N       | 1672                     | 3343                     | 5015                     |
| Ripple force (typical cogging)               | Fr               | Ν       | 8                        | 16                       | 24                       |
| Pole pair width                              | 2τ <sub>p</sub>  | mm      | 38                       | 38                       | 38                       |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "attraction force" and "ripple force": ±10%



The achievable speed limit depends on operating voltage  $(U_{zk})$  and current (force).

Force vs. speed

# L1B-3P-300-B Technical data III

| Winding data                                                             | Symbol           | Unit               | L1B-3P-<br>300x25-<br>WM | L1B-3P-<br>300x50-<br>WM | L1B-3P-<br>300x75-<br>WM |
|--------------------------------------------------------------------------|------------------|--------------------|--------------------------|--------------------------|--------------------------|
| Force constant                                                           | k <sub>f</sub>   | N/A <sub>rms</sub> | 29.4                     | 58.5                     | 87.3                     |
| Back EMF constant, phase-to-phase                                        | k <sub>u</sub>   | V/(m/s)            | 24.1                     | 47.9                     | 71.4                     |
| Limit speed at I <sub>p</sub> and U <sub>DCL</sub> = 300 V <sub>DC</sub> | v <sub>lim</sub> | m/s                | 6.8                      | 3.1                      | 1.9                      |
| Limit speed at $\rm I_p$ and $\rm U_{DCL}$ = 600 $\rm V_{DC}$            | V <sub>lim</sub> | m/s                | 14.6                     | 7.1                      | 4.5                      |
| Electric resistance, phase-to-phase (25 °C)                              | R <sub>25</sub>  | Ω                  | 1.34                     | 1.96                     | 2.58                     |
| Inductance, phase-to-phase                                               | L                | mH                 | 6.94                     | 13.89                    | 20.83                    |
| Ultimate current                                                         | l <sub>u</sub>   | A <sub>rms</sub>   | 27.2                     | 27.2                     | 27.2                     |
| Peak current (in the saturation range)                                   | ۱ <sub>p</sub>   | A <sub>rms</sub>   | 21.8                     | 21.8                     | 21.8                     |
| Peak current (linear range)                                              | I <sub>pl</sub>  | A <sub>rms</sub>   | 11.5                     | 11.5                     | 11.5                     |
| Continuous current                                                       | ۱ <sub>с</sub>   | A <sub>rms</sub>   | 5.0                      | 5.0                      | 5.0                      |
| Permissible temperature (at sensor)                                      | θ                | °C                 | 100                      | 100                      | 100                      |
| Max. link voltage                                                        | U <sub>DCL</sub> | V                  | 600                      | 600                      | 600                      |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "resistance" and "inductance": ±10%



#### Force vs. current

#### Note:

The winding variant WM (standard) described above is suitable for moderately dynamic performance requirements. The winding variants WL and WH suitable for lower and higher dynamic performance requirements are available upon request. The integrated temperature sensors do not display the exact winding temperature. Depending on current load, the winding temperature may be up to approx. 30 K higher.



# **L1C linear motors** Type designation for primary parts

|                            |                                                                                                                                                                                     | Primary part                                   |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                            |                                                                                                                                                                                     | <u>L1C - 3P - L - B - X - X - X - X - PRIM</u> |
| Type, o<br>L1<br>C         | <b>design</b><br>Linear motor (primary part), laminated<br>With cooling options                                                                                                     |                                                |
| Numbe<br>3P                | er of motor phases<br>3-phase                                                                                                                                                       |                                                |
| Length                     | n classification of coil system<br>100 mm, 200 mm, 300 mm, 400 mm                                                                                                                   |                                                |
| Width                      | of magnetic track<br>50 mm, 75 mm, 100 mm, 125 mm, 150 mm                                                                                                                           |                                                |
| Windir<br>WM<br>WX         | n <b>g design</b><br>Standard<br>Special variant                                                                                                                                    |                                                |
| Coolin<br>O<br>W<br>T<br>S | <b>g variant</b><br>Standard (without)<br>Water cooling via additional intermediate plate<br>Water cooling and additional thermal insulation<br>Special variant on request          |                                                |
| Tempe<br>O<br>S            | rature monitoring<br>Standard (PTC triple sensors at the phases U, V, W,<br>KTY84-130 on one phase)<br>Special variant on request                                                   |                                                |
| Conne<br>G<br>W<br>S       | <b>ction variant</b><br>Standard, fixed cables for motor and sensor<br>Cable length 1.0 m<br>Terminal (not with water cooling, I <sub>c</sub> ≤ 10 A)<br>Special variant on request |                                                |
| Motor                      | nart                                                                                                                                                                                |                                                |

Motor part PRIM Primary part

### **L1C linear motors** Type designation for secondary parts



SEK Secondary part

### L1C linear motors

Standard: Primary part with cable connection, secondary part with through-bore (variant 2)





### 

### L1C linear motors

Primary part with terminal, secondary part with tapped bore (variant 1)



Note: Primary part with terminal - only variants without water cooling



# L1C-3P-100-B Technical data I

| Primary part                                    | Symbol                           | Unit    | L1C-3P-                 | L1C-3P-                 | L1C-3P-                 | L1C-3P-                 | L1C-3P-                 |
|-------------------------------------------------|----------------------------------|---------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                                                 |                                  |         | 100-50-                 | 100-75-                 | 100-100-                | 100-125-                | 100-150-                |
|                                                 |                                  |         | WM                      | WM                      | WM                      | WM                      | WM                      |
| Length                                          | L <sub>1</sub>                   | mm      | 113                     | 113                     | 113                     | 113                     | 113                     |
| Width                                           | B <sub>1</sub>                   | mm      | 82                      | 107                     | 132                     | 157                     | 182                     |
| Height without/with cooling plate               | H <sub>1a</sub> /H <sub>1b</sub> | mm      | 33 /45                  | 33 /45                  | 33 /45                  | 33 /45                  | 33 /45                  |
| Height with cooling plate + thermal insulation  | H <sub>1c</sub>                  | mm      | 46                      | 46                      | 46                      | 46                      | 46                      |
| Mass without/with cooling plate                 | $m_{1a}/m_{1b}$                  | kg      | 1.5 /1.8                | 2.1/2.5                 | 2.6 /3.1                | 3.2 /3.8                | 3.8 /4.5                |
| Thread M6, quantity (length x width)            | -                                | -       | 3 x 2                   | 3 x 2                   | 3 x 2                   | 3 x 3                   | 3 x 3                   |
| Thread M6, distance/length                      | n <sub>l</sub> x c <sub>1</sub>  | mm      | 2x 31.5                 |
| Thread M6, distance/width                       | n <sub>b</sub> x b <sub>1</sub>  | mm      | 1x 30                   | 1x 55                   | 1x 80                   | 2x 52.5                 | 2x 65                   |
| Motor cable diameter                            | d <sub>K</sub>                   | mm      | 7.3                     | 7.3                     | 7.3                     | 7.3                     | 7.3                     |
| Standard: Secondary part, through-              |                                  |         |                         |                         |                         |                         |                         |
| bore (variant 2)                                |                                  |         |                         |                         |                         |                         |                         |
| Width                                           | B <sub>2</sub>                   | mm      | 80                      | 110                     | 130                     | 160                     | 180                     |
| Mass, length 76/length 152                      | m <sub>2</sub>                   | kg/unit | 0.78/1.56               | 1.11/2.22               | 1.36/2.72               | 1.68/3.36               | 1.94/3.88               |
| Height                                          | H <sub>2</sub>                   | mm      | 19.5                    | 19.5                    | 19.5                    | 19.5                    | 19.5                    |
| Through-bore for screw M6 ISO 4762              | b <sub>3</sub>                   | mm      | 65                      | 90                      | 115                     | 140                     | 165                     |
| Secondary part, tapped bore                     |                                  |         |                         |                         |                         |                         |                         |
| (variant 1)                                     |                                  |         |                         |                         |                         |                         |                         |
| Width                                           | B <sub>2</sub>                   | mm      | 50                      | 80                      | 100                     | 130                     | 150                     |
| Mass, length 76/length 152                      | m <sub>2</sub>                   | kg/unit | 0.58/1.16               | 0.90/1.80               | 1.16/2.32               | 1.47/2.94               | 1.72/3.44               |
| Height                                          | H <sub>2</sub>                   | mm      | 19.5                    | 19.5                    | 19.5                    | 19.5                    | 19.5                    |
| Thread M6 (from below)                          | b <sub>2</sub>                   | mm      | 38                      | 55                      | 80                      | 105                     | 2 x 65                  |
| Installation dimensions: L1C-3P-L-B             |                                  |         |                         |                         |                         |                         |                         |
| Overall height without cooling plate            | H <sub>a</sub>                   | mm      | 53.5 + 0.1              | 53.5 + 0.1              | 53.5 + 0.1              | 53.5 + 0.1              | 53.5 + 0.1              |
| Overall height with cooling plate               | H <sub>b</sub>                   | mm      | 65.5 + 0.1              | 65.5 + 0.1              | 65.5 + 0.1              | 65.5 + 0.1              | 65.5 + 0.1              |
| Overall height with cooling plate + therm. ins. | H <sub>c</sub>                   | mm      | 66.5 + 0.1              | 66.5 + 0.1              | 66.5 + 0.1              | 66.5 + 0.1              | 66.5 + 0.1              |
| Mechanical air gap                              | d                                | mm      | approx. 1               |
| Max. width (depending on variant)               | В                                | mm      | 82                      | 107/110                 | 132                     | 157/160                 | 182                     |
| Length of secondary part (76 mm grid)           | L <sub>2</sub>                   | mm      | L <sub>1</sub> + stroke |
| Cable length                                    | L <sub>K</sub>                   | mm      | ≈ 1000                  | ≈ 1000                  | ≈ 1000                  | ≈ 1000                  | ≈ 1000                  |

Note: The size specified for the air gap d is an auxiliary dimension and may fluctuate. The only technically relevant dimension is the specified overall installation height H, which must be complied with. A stainless steel cover can be ordered separately for the secondary parts. (The stainless steel cover is not included in the standard equipment.) Subject to modification without previous notice.

## L1C-3P-100-B Technical data II

| Performance data                                | Symbol             | Unit    | L1C-3P-<br>100-50-<br>WM | L1C-3P-<br>100-75-<br>WM | L1C-3P-<br>100-100-<br>WM | L1C-3P-<br>100-125-<br>WM | L1C-3P-<br>100-150-<br>WM |
|-------------------------------------------------|--------------------|---------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------|
| Ultimate force at I <sub>u</sub>                | Fu                 | Ν       | 515                      | 768                      | 1020                      | 1268                      | 1515                      |
| Peak force (saturation range) at I <sub>p</sub> | Fp                 | Ν       | 439                      | 656                      | 870                       | 1082                      | 1293                      |
| Peak force (linear range) at I <sub>pl</sub>    | F <sub>pl</sub>    | Ν       | 259                      | 387                      | 514                       | 639                       | 763                       |
| Continuous force (cooled) at I <sub>cw</sub>    | F <sub>cw</sub>    | Ν       | 249                      | 395                      | 543                       | 691                       | 838                       |
| Continuous force at I <sub>c</sub>              | Fc                 | Ν       | 131                      | 196                      | 259                       | 322                       | 387                       |
| Power loss at I <sub>n</sub> (25 °C)            | P <sub>In</sub>    | W       | 528                      | 698                      | 869                       | 1039                      | 1209                      |
| Power loss at I <sub>nl</sub> (25 °C)           | P <sub>lpl</sub>   | W       | 118                      | 156                      | 194                       | 232                       | 270                       |
| Power loss at I <sub>cw</sub>                   | P <sub>lcw</sub>   | W       | 141                      | 211                      | 282                       | 352                       | 423                       |
| Power loss at I <sub>c</sub> (25 °C)            | P <sub>lc</sub>    | W       | 30                       | 40                       | 49                        | 59                        | 69                        |
| Motor constant (25 °C)                          | k <sub>m</sub>     | N/√W    | 23.9                     | 31.0                     | 36.9                      | 42.0                      | 46.5                      |
| Damping constant (short-circuit)                | k <sub>d</sub>     | N/(m/s) | 571                      | 962                      | 1362                      | 1762                      | 2160                      |
| Electric time constant                          | $\tau_{el}$        | ms      | 8.67                     | 9.83                     | 10.54                     | 11.02                     | 11.36                     |
| Attraction force                                | Fa                 | N       | 1174                     | 1760                     | 2347                      | 2934                      | 3521                      |
| Ripple force (typical cogging)                  | F <sub>r</sub>     | N       | 12                       | 18                       | 24                        | 30                        | 36                        |
| Pole pair width                                 | 2τ <sub>p</sub>    | mm      | 38                       | 38                       | 38                        | 38                        | 38                        |
| Cooling-water flow-rate                         | dV/dt              | I/min   | 0.4                      | 0.6                      | 0.8                       | 1.0                       | 1.2                       |
| Cooling-water temperature-difference            | $\Delta \vartheta$ | К       | 5.0                      | 5.0                      | 5.0                       | 5.0                       | 5.0                       |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "attraction force" and "ripple force": ±10%



The achievable speed limit depends on operating voltage ( $U_{DCL}$ ) and current (force).

# L1C-3P-100-B Technical data III

| Winding data                                                          | Symbol           | Unit               | L1C-3P-<br>100-50-<br>WM | L1C-3P-<br>100-75-<br>WM | L1C-3P-<br>100-100-<br>WM | L1C-3P-<br>100-125-<br>WM | L1C-3P-<br>100-150-<br>WM |
|-----------------------------------------------------------------------|------------------|--------------------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------|
| Force constant                                                        | k <sub>f</sub>   | N/A <sub>rms</sub> | 53.7                     | 80.2                     | 106.5                     | 132.5                     | 158.2                     |
| Back EMF constant, phase-to-phase                                     | k <sub>u</sub>   | V/(m/s)            | 44.0                     | 65.6                     | 87.1                      | 108.4                     | 129.4                     |
| Limit speed at $\rm I_p$ and $\rm U_{\rm DCL}$ = 300 $\rm V_{\rm DC}$ | V <sub>lim</sub> | m/s                | 3.8                      | 2.4                      | 1.7                       | 1.2                       | 0.9                       |
| Limit speed at $\rm I_p$ and $\rm U_{\rm DCL}$ = 600 $\rm V_{\rm DC}$ | V <sub>lim</sub> | m/s                | 8.1                      | 5.3                      | 3.9                       | 3.0                       | 2.4                       |
| Electric resistance, phase-to-phase (25 °C)                           | R <sub>25</sub>  | Ω                  | 3.37                     | 4.46                     | 5.55                      | 6.64                      | 7.73                      |
| Inductance, phase-to-phase                                            | L                | mH                 | 29.26                    | 43.89                    | 58.52                     | 73.15                     | 87.78                     |
| Ultimate current                                                      | l <sub>u</sub>   | A <sub>rms</sub>   | 12.8                     | 12.8                     | 12.8                      | 12.8                      | 12.8                      |
| Peak current (in the saturation range)                                | I <sub>p</sub>   | A <sub>rms</sub>   | 10.2                     | 10.2                     | 10.2                      | 10.2                      | 10.2                      |
| Peak current (linear range)                                           | I <sub>pl</sub>  | A <sub>rms</sub>   | 4.8                      | 4.8                      | 4.8                       | 4.8                       | 4.8                       |
| Continuous current (cooled)                                           | I <sub>cw</sub>  | A <sub>rms</sub>   | 4.6                      | 4.9                      | 5.1                       | 5.2                       | 5.3                       |
| Continuous current (non cooled)                                       | Ι <sub>c</sub>   | A <sub>rms</sub>   | 2.4                      | 2.4                      | 2.4                       | 2.4                       | 2.4                       |
| Permissible temperature (at sensor)                                   | θ                | °C                 | 100                      | 100                      | 100                       | 100                       | 100                       |
| Max. link voltage                                                     | U <sub>DCL</sub> | V                  | 600                      | 600                      | 600                       | 600                       | 600                       |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "resistance" and "inductance": ±10%



### Note:

The winding variant WM (standard) described above is suitable for moderately dynamic performance requirements. The winding variants WL and WH suitable for lower and higher dynamic performance requirements are available upon request. The integrated temperature sensors do not display the exact winding temperature. Depending on current load, the winding temperature may be up to approx. 30 K higher.

# L1C-3P-200-B Technical data I

| Primary part                                    | Symbol                           | Unit    | L1C-3P-                 | L1C-3P-                 | L1C-3P-                 | L1C-3P-                 | L1C-3P-                 |
|-------------------------------------------------|----------------------------------|---------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                                                 |                                  |         | 200-50-<br>WM           | 200-75-<br>WM           | 200-100-<br>WM          | 200-125-<br>WM          | 200-150-<br>WM          |
| Length                                          | L1                               | mm      | 208                     | 208                     | 208                     | 208                     | 208                     |
| Width                                           | B <sub>1</sub>                   | mm      | 82                      | 107                     | 132                     | 157                     | 182                     |
| Height without/with cooling plate               | H <sub>1a</sub> /H <sub>1b</sub> | mm      | 33 /45                  | 33 /45                  | 33 /45                  | 33 /45                  | 33 /45                  |
| Height with cooling plate + thermal insulation  | H <sub>1c</sub>                  | mm      | 46                      | 46                      | 46                      | 46                      | 46                      |
| Mass without/with cooling plate                 | m <sub>1a</sub> /m <sub>1b</sub> | kg      | 2.8 / 3.4               | 3.8 /4.5                | 5.0 /5.9                | 6.1 /7.2                | 7.2 /8.4                |
| Thread M6, quantity (length x width)            | -                                | -       | 6 x 2                   | 6 x 2                   | 6 x 2                   | 6 x 3                   | 6 x 3                   |
| Thread M6, distance/length                      | n <sub>l</sub> x c <sub>1</sub>  | mm      | 5x 31.5                 |
| Thread M6, distance/width                       | n <sub>b</sub> x b <sub>1</sub>  | mm      | 1x 30                   | 1x 55                   | 1x 80                   | 2x 52.5                 | 2x 65                   |
| Motor cable diameter                            | d <sub>K</sub>                   | mm      | 10                      | 10                      | 10                      | 10                      | 10                      |
| Standard: Secondary part, through-              |                                  |         |                         |                         |                         |                         |                         |
| bore (variant 2)                                |                                  |         |                         |                         |                         |                         |                         |
| Width                                           | B <sub>2</sub>                   | mm      | 80                      | 110                     | 130                     | 160                     | 180                     |
| Mass, length 76/length 152                      | m <sub>2</sub>                   | kg/unit | 0.78/1.56               | 1.11/2.22               | 1.36/2.72               | 1.68/3.36               | 1.94/3.88               |
| Height                                          | H <sub>2</sub>                   | mm      | 19.5                    | 19.5                    | 19.5                    | 19.5                    | 19.5                    |
| Through-bore for screw M6 ISO 4762              | b <sub>3</sub>                   | mm      | 65                      | 90                      | 115                     | 140                     | 165                     |
| Secondary part, tapped bore                     |                                  |         |                         |                         |                         |                         |                         |
| (variant 1)                                     |                                  |         |                         |                         |                         |                         |                         |
| Width                                           | B <sub>2</sub>                   | mm      | 50                      | 80                      | 100                     | 130                     | 150                     |
| Mass, length 76/length 152                      | m <sub>2</sub>                   | kg/unit | 0.58/1.16               | 0.90/1.80               | 1.16/2.32               | 1.47/2.94               | 1.72/3.44               |
| Height                                          | H <sub>2</sub>                   | mm      | 19.5                    | 19.5                    | 19.5                    | 19.5                    | 19.5                    |
| Thread M6 (from below)                          | b <sub>2</sub>                   | mm      | 38                      | 55                      | 80                      | 105                     | 2 x 65                  |
| Installation dimensions: L1C-3P-L-B             |                                  |         |                         |                         |                         |                         |                         |
| Overall height without cooling plate            | H <sub>a</sub>                   | mm      | 53.5 + 0.1              | 53.5 + 0.1              | 53.5 + 0.1              | 53.5 + 0.1              | 53.5 + 0.1              |
| Overall height with cooling plate               | H <sub>b</sub>                   | mm      | 65.5 + 0.1              | 65.5 + 0.1              | 65.5 + 0.1              | 65.5 + 0.1              | 65.5 + 0.1              |
| Overall height with cooling plate + therm. ins. | H <sub>c</sub>                   | mm      | 66.5 + 0.1              | 66.5 + 0.1              | 66.5 + 0.1              | 66.5 + 0.1              | 66.5 + 0.1              |
| Mechanical air gap                              | d                                | mm      | approx. 1               |
| Max. width (depending on variant)               | В                                | mm      | 82                      | 107/110                 | 132                     | 157/160                 | 182                     |
| Length of secondary part (76 mm grid)           | L <sub>2</sub>                   | mm      | L <sub>1</sub> + stroke |
| Cable length                                    | L <sub>K</sub>                   | mm      | ≈ 1000                  | ≈ 1000                  | ≈ 1000                  | ≈ 1000                  | ≈ 1000                  |

Note: The size specified for the air gap d is an auxiliary dimension and may fluctuate. The only technically relevant dimension is the specified overall installation height H, which must be complied with. A stainless steel cover can be ordered separately for the secondary parts. (The stainless steel cover is not included in the standard equipment.) Subject to modification without previous notice.

# L1C-3P-200-B Technical data II

| Performance data                                   | Symbol             | Unit    | L1C-3P-<br>200-50-<br>WM | L1C-3P-<br>200-75-<br>WM | L1C-3P-<br>200-100-<br>WM | L1C-3P-<br>200-125-<br>WM | L1C-3P-<br>200-150-<br>WM |
|----------------------------------------------------|--------------------|---------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------|
|                                                    |                    |         |                          |                          |                           |                           |                           |
| Ultimate force at I <sub>u</sub>                   | Fu                 | Ν       | 1029                     | 1537                     | 2039                      | 2537                      | 3030                      |
| Peak force (saturation range) at ${\rm I}_{\rm p}$ | Fp                 | Ν       | 878                      | 1311                     | 1740                      | 2165                      | 2586                      |
| Peak force (linear range) at I <sub>pl</sub>       | F <sub>pl</sub>    | Ν       | 518                      | 774                      | 1027                      | 1278                      | 1526                      |
| Continuous force (cooled) at ${\rm I}_{\rm cw}$    | F <sub>cw</sub>    | Ν       | 488                      | 776                      | 1067                      | 1357                      | 1645                      |
| Continuous force at I <sub>c</sub>                 | Fc                 | Ν       | 247                      | 366                      | 487                       | 605                       | 724                       |
|                                                    |                    |         |                          |                          |                           |                           |                           |
| Power loss at I <sub>p</sub> (25 °C)               | P <sub>lp</sub>    | W       | 1056                     | 1396                     | 1737                      | 2078                      | 2418                      |
| Power loss at I <sub>pl</sub> (25 °C)              | P <sub>lpl</sub>   | W       | 235                      | 311                      | 387                       | 463                       | 539                       |
| Power loss at I <sub>cw</sub>                      | Plcw               | W       | 272                      | 407                      | 543                       | 679                       | 815                       |
| Power loss at I <sub>c</sub> (25 °C)               | Plc                | W       | 53                       | 70                       | 87                        | 104                       | 121                       |
|                                                    |                    |         |                          |                          |                           |                           |                           |
| Motor constant (25 °C)                             | k <sub>m</sub>     | N/√W    | 33.8                     | 43.9                     | 52.2                      | 59.4                      | 65.7                      |
| Damping constant (short-circuit)                   | k <sub>d</sub>     | N/(m/s) | 1141                     | 1924                     | 2724                      | 3525                      | 4319                      |
| Electric time constant                             | τ <sub>el</sub>    | ms      | 8.67                     | 9.83                     | 10.54                     | 11.02                     | 11.36                     |
|                                                    |                    |         |                          |                          |                           |                           |                           |
| Attraction force                                   | Fa                 | Ν       | 2261                     | 3392                     | 4523                      | 5653                      | 6784                      |
| Ripple force (typical cogging)                     | Fr                 | Ν       | 14                       | 20                       | 26                        | 32                        | 38                        |
| Pole pair width                                    | 2τ <sub>p</sub>    | mm      | 38                       | 38                       | 38                        | 38                        | 38                        |
|                                                    |                    |         |                          |                          |                           |                           |                           |
| Cooling-water flow-rate                            | dV/dt              | I/min   | 0.8                      | 1.2                      | 1.6                       | 1.9                       | 2.3                       |
| Cooling-water temperature-difference               | $\Delta \vartheta$ | К       | 5.0                      | 5.0                      | 5.0                       | 5.0                       | 5.0                       |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "attraction force" and "ripple force": ±10%



The achievable speed limit depends on operating voltage ( $U_{DCL}$ ) and current (force).

Force vs. speed

# L1C-3P-200-B Technical data III

| Winding data                                                             | Symbol           | Unit               | L1C-3P-<br>200-50-<br>WM | L1C-3P-<br>200-75-<br>WM | L1C-3P-<br>200-100-<br>WM | L1C-3P-<br>200-125-<br>WM | L1C-3P-<br>200-150-<br>WM |
|--------------------------------------------------------------------------|------------------|--------------------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------|
| Force constant                                                           | k <sub>f</sub>   | N/A <sub>rms</sub> | 53.7                     | 80.2                     | 106.5                     | 132.5                     | 158.2                     |
| Back EMF constant, phase-to-phase                                        | k <sub>u</sub>   | V/(m/s)            | 44.0                     | 65.6                     | 87.1                      | 108.4                     | 129.4                     |
| Limit speed at I <sub>p</sub> and U <sub>DCL</sub> = 300 V <sub>DC</sub> | V <sub>lim</sub> | m/s                | 3.6                      | 2.2                      | 1.5                       | 1.1                       | 0.9                       |
| Limit speed at $\rm I_p$ and $\rm U_{DCL}$ = 600 $\rm V_{DC}$            | V <sub>lim</sub> | m/s                | 7.7                      | 5.0                      | 3.6                       | 2.8                       | 2.3                       |
| Electric resistance, phase-to-phase (25 °C)                              | R <sub>25</sub>  | Ω                  | 1.69                     | 2.23                     | 2.78                      | 3.32                      | 3.86                      |
| Inductance, phase-to-phase                                               | L                | mH                 | 14.63                    | 21.95                    | 29.26                     | 36.58                     | 43.89                     |
| Ultimate current                                                         | I <sub>u</sub>   | A <sub>rms</sub>   | 25.5                     | 25.5                     | 25.5                      | 25.5                      | 25.5                      |
| Peak current (in the saturation range)                                   | l <sub>p</sub>   | A <sub>rms</sub>   | 20.4                     | 20.4                     | 20.4                      | 20.4                      | 20.4                      |
| Peak current (linear range)                                              | I <sub>pl</sub>  | A <sub>rms</sub>   | 9.6                      | 9.6                      | 9.6                       | 9.6                       | 9.6                       |
| Continuous current (cooled)                                              | I <sub>cw</sub>  | A <sub>rms</sub>   | 9.1                      | 9.7                      | 10.0                      | 10.2                      | 10.4                      |
| Continuous current (non cooled)                                          | Ι <sub>c</sub>   | A <sub>rms</sub>   | 4.6                      | 4.6                      | 4.6                       | 4.6                       | 4.6                       |
| Permissible temperature (at sensor)                                      | θ                | °C                 | 100                      | 100                      | 100                       | 100                       | 100                       |
| Max. link voltage                                                        | U <sub>DCL</sub> | V                  | 600                      | 600                      | 600                       | 600                       | 600                       |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "resistance" and "inductance": ±10%



### Note:

The winding variant WM (standard) described above is suitable for moderately dynamic performance requirements. The winding variants WL and WH suitable for lower and higher dynamic performance requirements are available upon request. The integrated temperature sensors do not display the exact winding temperature. Depending on current load, the winding temperature may be up to approx. 30 K higher.

Force vs. current

# L1C-3P-300-B Technical data I

| Primary part                                    | Symbol                           | Unit    | L1C-3P-                 | L1C-3P-                 | L1C-3P-                 | L1C-3P-                 | L1C-3P-                 |
|-------------------------------------------------|----------------------------------|---------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                                                 |                                  |         | 300-50-                 | 300-75-                 | 300-100-                | 300-125-                | 300-150-                |
|                                                 |                                  |         | WM                      | WM                      | WM                      | WM                      | WM                      |
| Length                                          | L <sub>1</sub>                   | mm      | 303                     | 303                     | 303                     | 303                     | 303                     |
| Width                                           | B <sub>1</sub>                   | mm      | 82                      | 107                     | 132                     | 157                     | 182                     |
| Height without/with cooling plate               | H <sub>1a</sub> /H <sub>1b</sub> | mm      | 33 /45                  | 33 /45                  | 33 /45                  | 33 /45                  | 33 /45                  |
| Height with cooling plate + thermal insulation  | H <sub>1c</sub>                  | mm      | 46                      | 46                      | 46                      | 46                      | 46                      |
| Mass without/with cooling plate                 | $m_{1a}/m_{1b}$                  | kg      | 4.1/4.9                 | 5.7 /6.7                | 7.3 /8.6                | 8.9 /10.4               | 10.5 /12.2              |
| Thread M6, quantity (length x width)            | -                                | -       | 9 x 2                   | 9 x 2                   | 9 x 2                   | 9 x 3                   | 9 x 3                   |
| Thread M6, distance/length                      | n <sub>l</sub> x c <sub>1</sub>  | mm      | 8x 31.5                 |
| Thread M6, distance/width                       | n <sub>b</sub> x b <sub>1</sub>  | mm      | 1x 30                   | 1x 55                   | 1x 80                   | 2x 52.5                 | 2x 65                   |
| Motor cable diameter                            | d <sub>K</sub>                   | mm      | 10                      | 10                      | 10                      | 10                      | 10                      |
| Standard: Secondary part, through-              |                                  |         |                         |                         |                         |                         |                         |
| bore (variant 2)                                |                                  |         |                         |                         |                         |                         |                         |
| Width                                           | B <sub>2</sub>                   | mm      | 80                      | 110                     | 130                     | 160                     | 180                     |
| Mass, length 76/length 152                      | m <sub>2</sub>                   | kg/unit | 0.78/1.56               | 1.11/2.22               | 1.36/2.72               | 1.68/3.36               | 1.94/3.88               |
| Height                                          | H <sub>2</sub>                   | mm      | 19.5                    | 19.5                    | 19.5                    | 19.5                    | 19.5                    |
| Through-bore for screw M6 ISO 4762              | b <sub>3</sub>                   | mm      | 65                      | 90                      | 115                     | 140                     | 165                     |
| Secondary part, tapped bore                     |                                  |         |                         |                         |                         |                         |                         |
| (variant 1)                                     |                                  |         |                         |                         |                         |                         |                         |
| Width                                           | B <sub>2</sub>                   | mm      | 50                      | 80                      | 100                     | 130                     | 150                     |
| Mass, length 76/length 152                      | m <sub>2</sub>                   | kg/unit | 0.58/1.16               | 0.90/1.80               | 1.16/2.32               | 1.47/2.94               | 1.72/3.44               |
| Height                                          | H <sub>2</sub>                   | mm      | 19.5                    | 19.5                    | 19.5                    | 19.5                    | 19.5                    |
| Thread M6 (from below)                          | b <sub>2</sub>                   | mm      | 38                      | 55                      | 80                      | 105                     | 2 x 65                  |
| Installation dimensions: L1C-3P-L-B             |                                  |         |                         |                         |                         |                         |                         |
| Overall height without cooling plate            | H <sub>a</sub>                   | mm      | 53.5 + 0.1              | 53.5 + 0.1              | 53.5 + 0.1              | 53.5 + 0.1              | 53.5 + 0.1              |
| Overall height with cooling plate               | H <sub>b</sub>                   | mm      | 65.5 + 0.1              | 65.5 + 0.1              | 65.5 + 0.1              | 65.5 + 0.1              | 65.5 + 0.1              |
| Overall height with cooling plate + therm. ins. | H <sub>c</sub>                   | mm      | 66.5 + 0.1              | 66.5 + 0.1              | 66.5 + 0.1              | 66.5 + 0.1              | 66.5 + 0.1              |
| Mechanical air gap                              | d                                | mm      | approx. 1               |
| Max. width (depending on variant)               | В                                | mm      | 82                      | 107/110                 | 132                     | 157/160                 | 182                     |
| Length of secondary part (76 mm grid)           | L <sub>2</sub>                   | mm      | L <sub>1</sub> + stroke |
| Cable length                                    | L <sub>K</sub>                   | mm      | ≈ 1000                  | ≈ 1000                  | ≈ 1000                  | ≈ 1000                  | ≈ 1000                  |

Note: The size specified for the air gap d is an auxiliary dimension and may fluctuate. The only technically relevant dimension is the specified overall installation height H, which must be complied with. A stainless steel cover can be ordered separately for the secondary parts. (The stainless steel cover is not included in the standard equipment.) Subject to modification without previous notice.

## L1C-3P-300-B Technical data II

| Performance data                                                                                 | Symbol                                              | Unit                  | L1C-3P-<br>300-50-<br>WM | L1C-3P-<br>300-75-<br>WM | L1C-3P-<br>300-100-<br>WM | L1C-3P-<br>300-125-<br>WM | L1C-3P-<br>300-150-<br>WM |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------|
| Ultimate force at I <sub>u</sub>                                                                 | Fu                                                  | Ν                     | 1544                     | 2305                     | 3059                      | 3805                      | 4545                      |
| Peak force (saturation range) at I <sub>p</sub>                                                  | Fp                                                  | Ν                     | 1317                     | 1967                     | 2610                      | 3247                      | 3878                      |
| Peak force (linear range) at I <sub>pl</sub>                                                     | F <sub>pl</sub>                                     | Ν                     | 778                      | 1161                     | 1541                      | 1917                      | 2289                      |
| Continuous force (cooled) at I <sub>cw</sub>                                                     | F <sub>cw</sub>                                     | Ν                     | 728                      | 1157                     | 1590                      | 2022                      | 2452                      |
| Continuous force at I <sub>c</sub>                                                               | Fc                                                  | Ν                     | 361                      | 540                      | 717                       | 890                       | 1066                      |
| Power loss at I <sub>p</sub> (25 °C)<br>Power loss at I <sub>pl</sub> (25 °C)<br>Power loss at I | P <sub>lp</sub><br>P <sub>lpl</sub>                 | W<br>W                | 1584<br>353<br>402       | 2095<br>467              | 2606<br>581               | 3117<br>695               | 3627<br>809               |
| Power loss at I <sub>c</sub> (25 °C)                                                             | P <sub>lcw</sub>                                    | W                     | 76                       | 101                      | 126                       | 150                       | 176                       |
| Motor constant (25 °C)<br>Damping constant (short-circuit)<br>Electric time constant             | k <sub>m</sub><br>k <sub>d</sub><br>τ <sub>el</sub> | N/√W<br>N/(m/s)<br>ms | 41.4<br>1712<br>8.67     | 53.7<br>2886<br>9.83     | 63.9<br>4085<br>10.54     | 72.7<br>5287<br>11.02     | 80.5<br>6479<br>11.36     |
| Attraction force<br>Ripple force (typical cogging)<br>Pole pair width                            | F <sub>a</sub><br>F <sub>r</sub><br>2τ <sub>p</sub> | N<br>N<br>mm          | 3349<br>16<br>38         | 5024<br>22<br>38         | 6698<br>28<br>38          | 8373<br>34<br>38          | 10047<br>36<br>38         |
| Cooling-water flow-rate<br>Cooling-water temperature-difference                                  | dV/dt<br>∆ϑ                                         | l/min<br>K            | 1.1<br>5.0               | 1.7<br>5.0               | 2.3<br>5.0                | 2.9<br>5.0                | 3.4<br>5.0                |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "attraction force" and "ripple force": ±10%



The achievable speed limit depends on operating voltage ( $U_{DCL}$ ) and current (force).

# L1C-3P-300-B Technical data III

| Winding data                                                             | Symbol           | Unit               | L1C-3P-<br>300-50-<br>WM | L1C-3P-<br>300-75-<br>WM | L1C-3P-<br>300-100-<br>WM | L1C-3P-<br>300-125-<br>WM | L1C-3P-<br>300-150-<br>WM |
|--------------------------------------------------------------------------|------------------|--------------------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------|
| Force constant                                                           | k <sub>f</sub>   | N/A <sub>rms</sub> | 53.7                     | 80.2                     | 106.5                     | 132.5                     | 158.2                     |
| Back EMF constant, phase-to-phase                                        | k <sub>u</sub>   | V/(m/s)            | 44.0                     | 65.6                     | 87.1                      | 108.4                     | 129.4                     |
| Limit speed at I <sub>p</sub> and U <sub>DCL</sub> = 300 V <sub>DC</sub> | V <sub>lim</sub> | m/s                | 3.6                      | 2.2                      | 1.5                       | 1.1                       | 0.9                       |
| Limit speed at $\rm I_p$ and $\rm U_{DCL}$ = 600 $\rm V_{DC}$            | V <sub>lim</sub> | m/s                | 7.7                      | 5.0                      | 3.6                       | 2.8                       | 2.3                       |
| Electric resistance, phase-to-phase (25 °C)                              | R <sub>25</sub>  | Ω                  | 1.12                     | 1.49                     | 1.85                      | 2.21                      | 2.58                      |
| Inductance, phase-to-phase                                               | L                | mH                 | 9.75                     | 14.63                    | 19.51                     | 24.38                     | 29.26                     |
| Ultimate current                                                         | l <sub>u</sub>   | A <sub>rms</sub>   | 38.3                     | 38.3                     | 38.3                      | 38.3                      | 38.3                      |
| Peak current (in the saturation range)                                   | I <sub>p</sub>   | A <sub>rms</sub>   | 30.6                     | 30.6                     | 30.6                      | 30.6                      | 30.6                      |
| Peak current (linear range)                                              | I <sub>pl</sub>  | A <sub>rms</sub>   | 14.5                     | 14.5                     | 14.5                      | 14.5                      | 14.5                      |
| Continuous current (cooled)                                              | I <sub>cw</sub>  | A <sub>rms</sub>   | 13.5                     | 14.4                     | 14.9                      | 15.3                      | 15.5                      |
| Continuous current (non cooled)                                          | Ι <sub>c</sub>   | A <sub>rms</sub>   | 6.7                      | 6.7                      | 6.7                       | 6.7                       | 6.7                       |
| Permissible temperature (at sensor)                                      | θ                | °C                 | 100                      | 100                      | 100                       | 100                       | 100                       |
| Max. link voltage                                                        | U <sub>DCL</sub> | V                  | 600                      | 600                      | 600                       | 600                       | 600                       |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "resistance" and "inductance": ±10%



### Note:

The winding variant WM (standard) described above is suitable for moderately dynamic performance requirements. The winding variants WL and WH suitable for lower and higher dynamic performance requirements are available upon request. The integrated temperature sensors do not display the exact winding temperature. Depending on current load, the winding temperature may be up to approx. 30 K higher.

Force vs. current

# L1C-3P-400-B Technical data I

| Primary part                                    | Symbol                           | Unit    | L1C-3P-<br>400-50-      | L1C-3P-<br>400-75-      | L1C-3P-<br>400-100-     | L1C-3P-<br>400-125-     | L1C-3P-<br>400-150-     |
|-------------------------------------------------|----------------------------------|---------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                                                 |                                  |         | WM                      | WM                      | WM                      | WM                      | WM                      |
| Length                                          | L <sub>1</sub>                   | mm      | 398                     | 398                     | 398                     | 398                     | 398                     |
| Width                                           | B <sub>1</sub>                   | mm      | 82                      | 107                     | 132                     | 157                     | 182                     |
| Height without/with cooling plate               | H <sub>1a</sub> /H <sub>1b</sub> | mm      | 33 /45                  | 33 /45                  | 33 /45                  | 33 /45                  | 33 /45                  |
| Height with cooling plate + thermal insulation  | H <sub>1c</sub>                  | mm      | 46                      | 46                      | 46                      | 46                      | 46                      |
| Mass without/with cooling plate                 | m <sub>1a</sub> /m <sub>1b</sub> | kg      | 5.4 /6.4                | 7.5 /8.8                | 9.6 /11.3               | 11.8 /13.8              | 13.9 /16.2              |
| Thread M6, quantity (length x width)            | -                                | -       | 12 x 2                  | 12 x 2                  | 12 x 2                  | 12 x 3                  | 12 x 3                  |
| Thread M6, distance/length                      | n <sub>l</sub> x c <sub>1</sub>  | mm      | 11x 31.5                |
| Thread M6, distance/width                       | n <sub>b</sub> x b <sub>1</sub>  | mm      | 1x 30                   | 1x 55                   | 1x 80                   | 2x 52.5                 | 2x 65                   |
| Motor cable diameter                            | d <sub>K</sub>                   | mm      | 11.6                    | 11.6                    | 11.6                    | 11.6                    | 11.6                    |
| Standard: Secondary part, through-              |                                  |         |                         |                         |                         |                         |                         |
| bore (variant 2)                                |                                  |         |                         |                         |                         |                         |                         |
| Width                                           | B <sub>2</sub>                   | mm      | 80                      | 110                     | 130                     | 160                     | 180                     |
| Mass, length 76/length 152                      | m <sub>2</sub>                   | kg/unit | 0.78/1.56               | 1.11/2.22               | 1.36/2.72               | 1.68/3.36               | 1.94/3.88               |
| Height                                          | H <sub>2</sub>                   | mm      | 19.5                    | 19.5                    | 19.5                    | 19.5                    | 19.5                    |
| Through-bore for screw M6 ISO 4762              | b <sub>3</sub>                   | mm      | 65                      | 90                      | 115                     | 140                     | 165                     |
| Secondary part, tapped bore                     |                                  |         |                         |                         |                         |                         |                         |
| (variant 1)                                     |                                  |         |                         |                         |                         |                         |                         |
| Width                                           | B <sub>2</sub>                   | mm      | 50                      | 80                      | 100                     | 130                     | 150                     |
| Mass, length 76/length 152                      | m <sub>2</sub>                   | kg/unit | 0.58/1.16               | 0.90/1.80               | 1.16/2.32               | 1.47/2.94               | 1.72/3.44               |
| Height                                          | H <sub>2</sub>                   | mm      | 19.5                    | 19.5                    | 19.5                    | 19.5                    | 19.5                    |
| Thread M6 (from below)                          | b <sub>2</sub>                   | mm      | 38                      | 55                      | 80                      | 105                     | 2 x 65                  |
| Installation dimensions: L1C-3P-L-B             |                                  |         |                         |                         |                         |                         |                         |
| Overall height without cooling plate            | H <sub>a</sub>                   | mm      | 53.5 + 0.1              | 53.5 + 0.1              | 53.5 + 0.1              | 53.5 + 0.1              | 53.5 + 0.1              |
| Overall height with cooling plate               | H <sub>b</sub>                   | mm      | 65.5 + 0.1              | 65.5 + 0.1              | 65.5 + 0.1              | 65.5 + 0.1              | 65.5 + 0.1              |
| Overall height with cooling plate + therm. ins. | H <sub>c</sub>                   | mm      | 66.5 + 0.1              | 66.5 + 0.1              | 66.5 + 0.1              | 66.5 + 0.1              | 66.5 + 0.1              |
| Mechanical air gap                              | d                                | mm      | approx. 1               |
| Max. width (depending on variant)               | В                                | mm      | 82                      | 107/110                 | 132                     | 157/160                 | 182                     |
| Length of secondary part (76 mm grid)           | L <sub>2</sub>                   | mm      | L <sub>1</sub> + stroke |
| Cable length                                    | L <sub>K</sub>                   | mm      | ≈ 1000                  | ≈ 1000                  | ≈ 1000                  | ≈ 1000                  | ≈ 1000                  |

Note: The size specified for the air gap d is an auxiliary dimension and may fluctuate. The only technically relevant dimension is the specified overall installation height H, which must be complied with. A stainless steel cover can be ordered separately for the secondary parts. (The stainless steel cover is not included in the standard equipment.) Subject to modification without previous notice.

# L1C-3P-400-B Technical data II

| Performance data                                   | Symbol             | Unit    | L1C-3P-<br>400-50-<br>WM | L1C-3P-<br>400-75-<br>WM | L1C-3P-<br>400-100-<br>WM | L1C-3P-<br>400-125-<br>WM | L1C-3P-<br>400-150-<br>WM |
|----------------------------------------------------|--------------------|---------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------|
| Ultimate force at I <sub>u</sub>                   | Fu                 | Ν       | 2058                     | 3073                     | 4078                      | 5074                      | 6060                      |
| Peak force (saturation range) at ${\rm I}_{\rm p}$ | Fp                 | Ν       | 1757                     | 2622                     | 3480                      | 4330                      | 5171                      |
| Peak force (linear range) at I <sub>pl</sub>       | F <sub>pl</sub>    | Ν       | 1037                     | 1548                     | 2054                      | 2556                      | 3052                      |
| Continuous force (cooled) at I <sub>cw</sub>       | $F_{cw}$           | Ν       | 967                      | 1538                     | 2113                      | 2688                      | 3259                      |
| Continuous force at I <sub>c</sub>                 | Fc                 | Ν       | 480                      | 709                      | 942                       | 1169                      | 1399                      |
| Power loss at I <sub>p</sub> (25 °C)               | P <sub>lp</sub>    | W       | 2112                     | 2793                     | 3474                      | 4155                      | 4837                      |
| Power loss at I <sub>pl</sub> (25 °C)              | P <sub>lpl</sub>   | W       | 471                      | 623                      | 775                       | 927                       | 1079                      |
| Power loss at I <sub>cw</sub>                      | P <sub>lcw</sub>   | W       | 533                      | 799                      | 1066                      | 1332                      | 1598                      |
| Power loss at I <sub>c</sub> (25 °C)               | P <sub>lc</sub>    | W       | 101                      | 131                      | 163                       | 194                       | 227                       |
| Motor constant (25 °C)                             | k <sub>m</sub>     | N/√W    | 47.8                     | 62.0                     | 73.8                      | 84.0                      | 92.9                      |
| Damping constant (short-circuit)                   | k <sub>d</sub>     | N/(m/s) | 2283                     | 3847                     | 5447                      | 7049                      | 8639                      |
| Electric time constant                             | τ <sub>el</sub>    | ms      | 8.67                     | 9.83                     | 10.54                     | 11.02                     | 11.36                     |
| Attraction force                                   | F <sub>a</sub>     | N       | 4437                     | 6655                     | 8874                      | 11092                     | 13311                     |
| Ripple force (typical cogging)                     | Fr                 | Ν       | 18                       | 24                       | 30                        | 36                        | 38                        |
| Pole pair width                                    | $2\tau_p$          | mm      | 38                       | 38                       | 38                        | 38                        | 38                        |
| Cooling-water flow-rate                            | dV/dt              | I/min   | 1.5                      | 2.3                      | 3.0                       | 3.8                       | 4.6                       |
| Cooling-water temperature-difference               | $\Delta \vartheta$ | К       | 5.0                      | 5.0                      | 5.0                       | 5.0                       | 5.0                       |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "attraction force" and "ripple force": ±10%



The achievable speed limit depends on operating voltage ( $U_{DCL}$ ) and current (force).

Force vs. speed

# L1C-3P-400-B Technical data III

| Winding data                                                             | Symbol           | Unit               | L1C-3P-<br>400-50-<br>WM | L1C-3P-<br>400-75-<br>WM | L1C-3P-<br>400-100-<br>WM | L1C-3P-<br>400-125-<br>WM | L1C-3P-<br>400-150-<br>WM |
|--------------------------------------------------------------------------|------------------|--------------------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------|
| Force constant                                                           | k <sub>f</sub>   | N/A <sub>rms</sub> | 53.7                     | 80.2                     | 106.5                     | 132.5                     | 158.2                     |
| Back EMF constant, phase-to-phase                                        | k <sub>u</sub>   | V/(m/s)            | 44.0                     | 65.6                     | 87.1                      | 108.4                     | 129.4                     |
| Limit speed at I <sub>p</sub> and U <sub>DCL</sub> = 300 V <sub>DC</sub> | V <sub>lim</sub> | m/s                | 3.6                      | 2.2                      | 1.5                       | 1.1                       | 0.9                       |
| Limit speed at $\rm I_p$ and $\rm U_{DCL}$ = 600 $\rm V_{DC}$            | V <sub>lim</sub> | m/s                | 7.7                      | 5.0                      | 3.6                       | 2.8                       | 2.3                       |
| Electric resistance, phase-to-phase (25 °C)                              | R <sub>25</sub>  | Ω                  | 0.84                     | 1.12                     | 1.39                      | 1.66                      | 1.93                      |
| Inductance, phase-to-phase                                               | L                | mH                 | 7.32                     | 10.97                    | 14.63                     | 18.29                     | 21.95                     |
| Ultimate current                                                         | Ι <sub>u</sub>   | A <sub>rms</sub>   | 51.1                     | 51.1                     | 51.1                      | 51.1                      | 51.1                      |
| Peak current (in the saturation range)                                   | l <sub>p</sub>   | A <sub>rms</sub>   | 40.9                     | 40.9                     | 40.9                      | 40.9                      | 40.9                      |
| Peak current (linear range)                                              | I <sub>pl</sub>  | A <sub>rms</sub>   | 19.3                     | 19.3                     | 19.3                      | 19.3                      | 19.3                      |
| Continuous current (cooled)                                              | I <sub>cw</sub>  | A <sub>rms</sub>   | 18.0                     | 19.2                     | 19.8                      | 20.3                      | 20.6                      |
| Continuous current (non cooled)                                          | Ι <sub>c</sub>   | A <sub>rms</sub>   | 8.9                      | 8.8                      | 8.8                       | 8.8                       | 8.8                       |
| Permissible temperature (at sensor)                                      | θ                | °C                 | 100                      | 100                      | 100                       | 100                       | 100                       |
| Max. link voltage                                                        | U <sub>DCL</sub> | V                  | 600                      | 600                      | 600                       | 600                       | 600                       |

Subject to modification without previous notice.

Tolerance range for values: ±5% • Tolerance range for values "resistance" and "inductance": ±10%



### Note:

The winding variant WM (standard) described above is suitable for moderately dynamic performance requirements. The winding variants WL and WH suitable for lower and higher dynamic performance requirements are available upon request. The integrated temperature sensors do not display the exact winding temperature. Depending on current load, the winding temperature may be up to approx. 30 K higher.

Force vs. current

# **Check List for Your Enquiry** Send by fax to: +49 3681 7574-30

This check list can also be downloaded from the download centre at www.idam.de.

| Company                                                               | Contact person | <br>Industry / appellation of project |                    |  |  |  |  |
|-----------------------------------------------------------------------|----------------|---------------------------------------|--------------------|--|--|--|--|
| Telephone                                                             | Fax            | <br>E-mail                            |                    |  |  |  |  |
| Brief description                                                     |                |                                       |                    |  |  |  |  |
| Motor                                                                 | System         | Axis within a m                       | ulti-axis system 🛛 |  |  |  |  |
| <b>Spatial position of drive axis</b><br>Type of weight compensation: |                |                                       |                    |  |  |  |  |
| Installation conditions for drive                                     |                |                                       |                    |  |  |  |  |
| (sketch or drawing, if appropriate)                                   |                |                                       |                    |  |  |  |  |
| Max. installation dimensions [mm]:                                    |                |                                       |                    |  |  |  |  |
| (length/width/height)                                                 |                |                                       |                    |  |  |  |  |
| Mechanical interface:                                                 |                |                                       |                    |  |  |  |  |
| Ambient conditions                                                    |                |                                       |                    |  |  |  |  |
| Temperature [K]:                                                      |                |                                       |                    |  |  |  |  |
| Contamination:                                                        |                |                                       |                    |  |  |  |  |
| Protection class (IP):                                                |                |                                       |                    |  |  |  |  |
| Motion variables                                                      |                |                                       |                    |  |  |  |  |
| Stroke s [mm]:                                                        |                |                                       |                    |  |  |  |  |
| Payload [kg]:                                                         |                |                                       | Skotch             |  |  |  |  |
| External forces [N]:                                                  |                |                                       | Sketchi            |  |  |  |  |
| Maximum speed [m/s]:                                                  |                |                                       |                    |  |  |  |  |
| Constant velocity fluctuations [%] at:                                |                |                                       |                    |  |  |  |  |
| Shortest acceleration                                                 |                |                                       |                    |  |  |  |  |
| and/or deceleration time [ms]:                                        |                |                                       |                    |  |  |  |  |
| Overshoot in position [µm]:                                           |                |                                       | t                  |  |  |  |  |
| Settling time [ms]:                                                   |                |                                       |                    |  |  |  |  |
| Typical cycle per time (diagram):                                     |                |                                       |                    |  |  |  |  |
| Service life/operating hours [h]:                                     |                |                                       |                    |  |  |  |  |
|                                                                       |                |                                       |                    |  |  |  |  |

| Poquirad accuracias              |                       |        | г |       |                 |       |    |
|----------------------------------|-----------------------|--------|---|-------|-----------------|-------|----|
| (cleated accuracies              | ann ran riata)        |        |   |       |                 |       |    |
| Oscilianing accuracy in          | appropriate)          |        |   |       |                 |       |    |
| Positioning accuracy []          | , iii]:               |        |   |       |                 |       |    |
| Repeatability [µlli]:            |                       |        |   |       |                 |       |    |
| Cooling                          |                       |        |   |       |                 |       |    |
| Cooling permissible?             |                       |        |   |       |                 |       |    |
| Yes 🗌 No                         |                       |        |   |       |                 |       |    |
| Oil 🗌 Water                      | 🗌 Air 🗌               |        |   |       |                 |       |    |
| Max. permissible temp            | perature of           |        |   |       |                 |       |    |
| primary part [K]:                |                       |        |   |       |                 |       |    |
| secondary part [K]:              |                       |        |   |       |                 |       |    |
|                                  |                       |        |   |       |                 |       |    |
| Controller                       |                       |        |   |       |                 |       |    |
| Present?                         |                       |        |   |       |                 |       |    |
| Yes 🗌 No                         |                       |        |   |       |                 |       |    |
| Link voltage [V <sub>DC</sub> ]: |                       |        |   |       |                 |       |    |
| Controller type:                 |                       |        |   |       |                 |       |    |
| Components:                      | Servo converter only  |        |   |       |                 |       |    |
|                                  | Complete controller   |        |   |       |                 |       |    |
| Positioning:                     | Point-to-point contro | l      |   |       |                 |       |    |
|                                  | Continuous path con   | trol   |   |       |                 | Skete | ch |
| Interfaces                       |                       |        |   |       |                 |       |    |
| Ontions:                         |                       |        |   |       |                 |       |    |
| options.                         |                       |        |   |       |                 |       |    |
| General information              |                       |        |   |       |                 |       |    |
| Accessories:                     |                       |        |   |       |                 |       |    |
| Single unit                      |                       | Series |   | Proto | type for series |       |    |
| Anticipated yearly dem           | nand:                 |        |   |       |                 |       |    |
| Planned series launch            | :                     |        |   |       |                 |       |    |
| Price expectation or             |                       |        |   |       |                 |       |    |
| costs for previous solu          | ition:                |        |   |       |                 |       |    |
| Requested date of quo            | otation:              |        |   |       |                 |       |    |
|                                  |                       |        |   |       |                 |       |    |
| Prepared by:                     |                       |        |   | Date: |                 |       |    |
| Further processing by:           |                       |        |   | Date: |                 |       |    |
| Feasibility verified by:         |                       |        |   | Date: |                 |       |    |

### **Technical Information and Consulting Services**



Class-leading technology and competent consulting services are two of the major benefits of working with IDAM. IDAM application engineers are looking forward to support you choose the perfect drive for your application. Industry: Automation/Medical Technology E-mail: automation@ina-dam.de

Industry: Productronics/Measuring Technology E-mail: productronic@ina-dam.de Industry: Production Machinery/Heavy Industries E-mail: pm@ina-dam.de

Industry: Automotive E-mail: automotive@ina-dam.de

Please contact us: Phone: +49 3681 7574-0

### **IDAM Worldwide**



#### Austria

Phone: +43 2672 2023332 E-mail: austria@ina-dam.de

#### Canada

Phone: +780 980 3016 E-mail: canada@ina-dam.de

#### China

Phone: +86 21 39576612 E-mail: china@ina-dam.de

#### Finland

Phone: +358 207 366238 E-mail: finland@ina-dam.de

#### Israel

Phone: +972 3 5441941 E-mail: israel@ina-dam.de

#### Italy

Phone: +39 0321 929267 E-mail: italia@ina-dam.de

#### Japan

Phone: +81 45 4765913 E-mail: japan@ina-dam.de

### Korea

Phone: +82 2 311 3096 E-mail: korea@ina-dam.de

#### Netherlands

Phone: +31 342 403208 E-mail: nederland@ina-dam.de

### Russia

Phone: +7 495 7377660 E-mail: russia@ina-dam.de

### Singapore

Phone: +65 6540 8616 E-mail: singapore@ina-dam.de

### Spain/Portugal

Phone: +34 93 4803679 E-mail: iberia@ina-dam.de

### **Switzerland** Phone: +41 71 4666312

E-mail: schweiz@ina-dam.de

**Taiwan** E-mail: taiwan@ina-dam.de

United Kingdom E-mail: uk@ina-dam.de

#### USA

Phone: +1 704 5167517 E-mail: usa@ina-dam.de

### **Other countries:** E-mail: sales@ina-dam.de

# **Glossary** Winding-independent parameters

### Saturation behaviour

The force initially rises linearly with increasing RMS current, then goes into a curved region before reaching a region with a flatter slope. The curvature is a result of the magnetic saturation of the entire magnetic circuit ("saturation region").

See also page 10, "Force-current characteristic"



### Force vs. current

| Symbol          | Meaning                         | Unit | Explanation                                                                                                                                                                                                                                                                                                                            |
|-----------------|---------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fu              | Ultimate force                  | Ν    | Force at strong saturation of the magnetic circuit. When this force is exceeded<br>there is a risk that the heated motor could become demagnetized or that thermal<br>destruction is immanent shortly! This value must not be used as a dimensioning<br>variable, but must be taken into account in the case of short-circuit braking. |
| Fp              | Peak force                      | Ν    | Force, which is excited in the saturation range $(I_p)$ . The permissible duration depends on the current motor temperature vastly and it is in the range of few seconds (13 s).                                                                                                                                                       |
| F <sub>pl</sub> | Peak force,<br>linear           | Ν    | Motor force which can be achieved temporarily (for a few seconds) at the end of the linear dynamic range at $I_{pl}\cdot k_{M}$ .                                                                                                                                                                                                      |
| Fc              | Continuous force,<br>non cooled | Ν    | Motor force at continuous current $I_c$ provided all motor phases are subjected to the same load, whereby it is assumed that the heat-exchange surface is an attached plate with approx. 3 times the surface of the primary part.                                                                                                      |
| F <sub>cw</sub> | Continuous force,<br>cooled     | Ν    | Motor force at $I_{cw}$ which is available as a continuous force in rated operation with water cooling and at which a temperature gradient of approx. 100 K between winding and cooling is established. (cooling-water supply-temperature: 20 °C ± 5 °C)                                                                               |
| Fs              | Standstill force                | Ν    | Usable standstill force at standstill and at control frequencies of up to approx. 1 Hz, which is established at the respective standstill current as a result of the non-uniform current distribution in the individual motor phases. Its magnitude is 0.7 times the relevant reference force ( $F_c$ , $F_{cw}$ ).                    |

| Symbol           | Meaning                         | Unit | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|---------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pı               | Power loss                      | W    | The thermal power loss occurring in the motor winding which, as a function of the operating mode (current) and the ambient conditions (cooling) leads to a time-dependent temperature increase. In the upper dynamic range (at $F_p$ ), $P_l$ is particularly high because of the quadratic dependency on the current, whereas in the region of the continuous current only a relatively low level of heating occurs. $P_l$ is calculated with the aid of the motor constant $k_m$ for a motion section with the required force F: $P_l = (F/k_m)^2$ |
| P <sub>lp</sub>  | Peak power loss                 | W    | Peak power loss at I <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P <sub>lpl</sub> | Peak power loss,<br>linear      | W    | Peak power loss at I <sub>pl</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P <sub>lc</sub>  | Rated power loss,<br>non cooled | W    | Power loss at I <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P <sub>lcw</sub> | Rated power loss,<br>cooled     | W    | Power loss at I <sub>cw</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9                | Winding<br>temperature          | °C   | <ul> <li>Permissible winding temperature which is recorded by sensors with a particular offset.</li> <li>The temperature of the motor surface depends on: <ul> <li>the specific installation conditions (dimensions of the machine design)</li> <li>the heat dissipation conditions</li> <li>the operating mode and therefore the mean power input and can only be determined if these factors are known.</li> </ul> </li> </ul>                                                                                                                     |
| τ <sub>el</sub>  | Electric time<br>constant       | ms   | Electric time constant, which describes the L/R ratio. The ratio is - independently of the winding design - approximately constant. The effective time constant in terms of control depends on the degree of voltage overshoot and is lower.                                                                                                                                                                                                                                                                                                         |
| Fr               | Ripple force,<br>cogging        | Ν    | Force resulting as the sum of reluctance-related forces (cogging), which during movement of the currentless motor act in feed direction and are expressed as a ripple in the forces during operation (peak to peak).                                                                                                                                                                                                                                                                                                                                 |

| Symbol         | Meaning                                | Unit    | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|----------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| k <sub>m</sub> | Motor constant                         | N/√W    | Motor constant which expresses the relationship between the generated force<br>and the power loss (i.e. the efficiency of the motor). It is temperature-dependent<br>and applies specifically only during static operation as well as in the linear<br>dynamic range of the motor, e.g. during positioning procedures at low speeds.<br>At a winding temperature of 100 °C it is reduced to approx. 0.88 times this value. |
| k <sub>d</sub> | Damping<br>constant<br>(short-circuit) | N/(m/s) | At zero impedance (short circuit) the motor generates a regenerative damping force which is speed-dependent and decelerates the motor. $F_d = k_d \cdot v$                                                                                                                                                                                                                                                                 |
| $2\tau_p$      | Pole pair width                        | mm      | The pole pair width (also referred to as the magnetic period) $2\tau_p$ describes the path length of a pole pair of the linear motors. $\tau$ with the index p is the pole width (magnet width) in the traversing direction with a magnetic field which alternates in relation to N and S.                                                                                                                                 |





The temperature-dependent motor constant  $k_m$  with the unit N/ $\sqrt{W}$  expresses the relationship between force and power loss. For further information about the dependencies between power loss and force and motor constants refer to page 7, "General Motor Parameters".

Motor constant vs. temperature

Winding resistance increases if temperature increases, which leads to a reduction of  $k_{\rm m}$ .

At a winding temperature of 100 °C the motor constant is reduced to about 0.88 times the value at 25 °C. With a constant current or constant force, the power loss generated in a warm motor is therefore higher than that of a cold motor, and this in turn increases the motor temperature even further.
## **Glossary** Winding-dependent parameters

| Symbol                  | Meaning                              | Unit               | Explanation                                                                                                                                                                                                                         |
|-------------------------|--------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| k <sub>f</sub>          | Force constant                       | N/A <sub>rms</sub> | Force constant which, in the linear dynamic range, is multiplied with the current to give the resulting motor force: $F = I_n \cdot k_f$                                                                                            |
| k <sub>u</sub>          | Back EMF<br>constant                 | V/(m/s)            | Voltage constant which in generating service is multiplied with the speed to produce the anchor back EMF present at the motor terminals: $U_{EMF} = k_u \cdot v$ .                                                                  |
| <b>v</b> <sub>lim</sub> | Limit<br>speed                       | m/s                | Temporarily achievable limit speed up to which the force F <sub>p</sub> at current I <sub>p</sub> can be held relatively constant. At higher values the motor force is reduced. At lower currents/forces the limit speed is higher. |
| U <sub>DCL</sub>        | Link<br>voltage                      | V                  | Link voltage or feeding voltage for the power actuators. It must be higher for higher speeds and thus increasing back EMF and frequency-dependent losses.                                                                           |
| R <sub>25</sub>         | Winding<br>resistance                | Ω                  | Phase-to-phase winding resistance at 25 °C.<br>At 100 °C this value increases by a factor of approx. 1.3.                                                                                                                           |
| I <sub>u</sub>          | Ultimate current                     | A <sub>rms</sub>   | Ultimate current (<1 second!) at which the magnetic circuit is strongly saturated.<br>Caution: Risk of demagnetization! Thermal destruction of motor is immanent!                                                                   |
| I <sub>p</sub>          | Peak current                         | A <sub>rms</sub>   | Peak RMS current which is in the region of iron saturation and can be used as a dimensioning variable (see also $F_p$ ).                                                                                                            |
| I <sub>pl</sub>         | Peak current,<br>linear              | A <sub>rms</sub>   | Peak RMS current up to which an approximately proportional force curve occurs.                                                                                                                                                      |
| l <sub>c</sub>          | Continuous<br>current, non<br>cooled | A <sub>rms</sub>   | Nominal RMS current at which the associated power loss with a defined size of attached plate (see $F_c$ ) without forced cooling leads to a coil temperature of approx. 100 °C.                                                     |
| I <sub>cw</sub>         | Continuous<br>current, cooled        | A <sub>rms</sub>   | Nominal RMS current which is achievable with water cooling (cooling-water sup-<br>ply-temperature 25 °C) in continuous operation. The resistance value may be<br>changed corresponding to real coil winding temperature.            |

| Symbol | Meaning            | Unit             | Explanation                                                                                                                                                                                                                                                                                                                                                                              |
|--------|--------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ls     | Standstill current | A <sub>rms</sub> | RMS standstill current at standstill and with control frequencies of up to approx. 1 Hz. Due to the different current distribution in the motor phases, it is necessary to reduce the motor current to this value in order to prevent local overheating if no noticeable movement beyond a pole pair takes place. Its magnitude is 0.7 times the reference current ( $I_c$ , $I_{cw}$ ). |
| L      | Motor inductance   | mH               | Inductance of the motor measured between two phases.                                                                                                                                                                                                                                                                                                                                     |

## At a Glance: IDAM Brochures

Are you interested in more detailed technical information? Then don't hesitate to contact us: info@ina-dam.de



All information about our motors and systems you can download on IDAM website: www.idam.de







## At a Glance: Motor Forces of the L1 Series

To help you select the most suitable L1 motor for your application, an overview of the motor forces of all L1 motors is provided in the following.

Please fold out this page to see the overview.







## INA - Drives & Mechatronics GmbH & Co. oHG

Mittelbergstrasse 2 98527 Suhl I Germany

 Phone
 +49 3681 | 7574-0

 Fax
 +49 3681 | 7574-30

E-mail info@ina-dam.de Web www.idam.de